
VIVO Data Models

Concepts
Divisions in the knowledge base

Types of statements
Source of statements
"Content" vs. "Configuration"
Model scope

Purpose vs. scope
Filtering

The Data Models
Increasing complexity

Beyond the models
Attributes on Context, Session, or Request
The DAO layer
OntModelSelectors
The RDF Service
Model makers and Model sources

The ModelAccess class
Initializing the Models

Where are the RDF files?
The "first time"

Initializing Configuration models
Application metadata
User Accounts
The Display model
Display TBox
DisplayDisplay

Initializing Content models
base ABox
base TBox
base Full
inference ABox
inference TBox
inference Full
union ABox
union TBox
union Full

Concepts

Frequently, we talk about "the data model" in VIVO. But this is an over-simplification which can be useful at times, but misleading at other times. In fact,
VIVO contains a matrix of data models and sub-models, graphs, datasets and other constructs.

It might be more accurate to talk about the union of these data models as "the knowlege base". However, the terminology of "the data model" is firmly
entrenched.

Beginning in VIVO release 1.6, we are attempting to simplify this complex collection of models, and to produce a unified access layer. This is a work in
progress. Regardless of how clean the design might eventually become, this will remain an area with complex requirements which cannot be satisfied by
simplistic solutions.

Divisions in the knowledge base

Depending on what you want to do with the data, it can be useful to sub-divide it by one or more of the following criteria:

Types of statements

An RDF model is often divided into ABox (assertions) and TBox (terminology). In RDF, there is no technical distinction between TBox and ABox data. They
are stored separately because they are used for different purposes. The combination of the two is informally called the Full model.

 Data type Example data

TB
ox

"Terminological data"

Defines classes, properties, and relationships in your ontology.

 foaf:Person
 a owl:Class ;
 rdfs:subClassOf owl:
Thing ;
 rdfs:label "Person"@en
.
ex:preferredName
 a owl:DatatypeProperty
;
 rdfs:subPropertyOf
skos:prefLabel,

foaf:name,

rdfs:label ;
 rdfs:domain foaf:
Person ;
 rdfs:label "preferred
name"@en .

AB
ox

"Assertion data"

Enumerates the individual instances of your classes and describes them.

 local:tobyink
 a foaf:Person ;
 ex:preferredName "Toby
Inkster" .

Full The TBox and the ABox together, treated as a single model.

For example, when you use the RDF tools to remove statements, you want them removed regardless of
whether they are found in the TBox or the ABox.

Source of statements

An RDF model can also be divided into Assertions and Inferences. The combination of the two is informally called the Union.

Statement
type

Meaning Example data

Assertions Statements that you explicitly add to the model, either through setup, ingest, or editing. local:tobyink rdfs:type
core:FacultyMember .

Inferences Statements that the semantic reasoner adds to the model, by reasoning about the assertions, or
about other inferences.

 local:tobyink
rdfs:type foaf:Person .

 local:tobyink
rdfs:type foaf:Agent .

 local:tobyink
rdfs:type owl:Thing .

Union The combination of Assertions and Inferences.

For most purposes, this is the desired model. You want to know what statements are available,
without regard to whether they were asserted or inferred.

http://localtobyink
http://rdfstype

"Content" vs. "Configuration"

We sometimes distinguish between the data that VIVO is serving (Content) and the data that VIVO itself uses (Configuration). The Content is available for
display, for searching, for serving as Linked Open Data. The Configuration controls how the content is displayed, who can access the data, and what VIVO
itself looks like.

Model type Purpose Examples

Configuration Data about the VIVO application itself. Application parameters

User Accounts

Display options

Content The payload - the data that VIVO is intended to distribute. People data

Publications data

Grant data

etc.

Model scope

The knowledge base exists for as long as VIVO is running. However, subsets or facets of the knowledge base are often used to satisfy a particular HTTP
request, or through the length of a VIVO session for a particular user. These subsets are created dynamically from the full knowledge base, used for as
long as they are useful, and then discarded.

Scope Purpose Example Discarded when...

Application

(Servlet
Context)

Created for the life of VIVO.

 Never discarded.

Session Created for a particular logged-in
user

Data that is filtered by what the user is permitted to view. When the user logs out, or the session
times out.

Request Created for a single HTTP request Data that is organized by the languages that are preferred by the
browser.

When the individual request has been
satisfied.

At present, the Session lifespan is almost never used. However, potential use cases do exist for it.

The Request lifespan is used extensively, since it provides a convenient way to manage database connections and minimize contention for resources.

Purpose vs. scope

It is tempting to think of the models of the Servlet Context as equivalent to the unfiltered models of the Request. They may even represent the very same
data. However, they have different scope, which makes them very different in practice.

The unfiltered models in the Request go out of scope when the Request has been satisfied. The resources required by these models have short lifetimes
and are very easily managed. The models of the Servlet Context never go out of scope until VIVO is shut down. It is difficult to reclaim resources such as
database connections or processor memory from these models.

Filtering
TBD: talk about language filters and policy filters. What do we mean by "unfiltered?"

The Data Models
This is a summary of the data models:

The basic
content

Base ABox, Base TBox, Inferred ABox, Inferred TBox Named graphs from the RDF Service (optionally with
sub-graphs).

Views of the
content

Base Full, Inferred Full, Union ABox, Union TBox, Union Full Views of the 4 basic content graphs in different
combinations.

The configuration Application Metadata, User Accounts, Display Model, Display TBox,
DisplayDisplay

Named graphs from the application datasource.

Increasing complexity
The structure of the data models has grown as VIVO has developed. New models, new structures, and new means of accessing the data have been
added as required by the growing code. The resulting data layer has grown more complex and more error-prone.

The interface, increases the flexibility of data sources, and promises to allow a more unified view of the knowledge base. However, the RDFService
transition to is not complete, and so this adds another layer of complexity to the data issues. New structures have been added, but none RDFService
removed.

Beyond the models

There is an incredible variety of ways to access all of these models. Some of this variety is because the models are accessed in different ways for different
purposes. Additional variety stems from the evolution of VIVO in which new mechanisms were introduced without taking the time and effort to phase out
older mechanisms.

Here are some of the ways for accessing data models:

Attributes on Context, Session, or Request

Previously, it was common to assign a model to the ServletContext, to the HTTP Session, or to the HttpSessionRequest like this:

OntModel ontModel = (OntModel) getServletContext().getAttribute("jenaOntModel");

Object sessionOntModel = request.getSession().getAttribute("jenaOntModel");

ctx.setAttribute("jenaOntModel", masterUnion);

Occasionally, conditional code was inserted, to retrieve a model from the Request if available, and to fall back to the Session or the Context as necessary.
Such code was sporadic, and inconsistent. This sort of model juggling also involved inversions of logic, with some code acting so a model in the Request
would override one in the Session, while other code would prioritize the Session model over the one in the Request. For example:

public OntModel getDisplayModel(){
 if(_req.getAttribute("displayOntModel") != null){
 return (OntModel) _req.getAttribute(DISPLAY_ONT_MODEL);
 } else {
 HttpSession session = _req.getSession(false);
 if(session != null){
 if(session.getAttribute(DISPLAY_ONT_MODEL) != null){
 return (OntModel) session.getAttribute(DISPLAY_ONT_MODEL);
 }else{
 if(session.getServletContext().getAttribute(DISPLAY_ONT_MODEL) != null){
 return (OntModel)session.getServletContext().getAttribute(DISPLAY_ONT_MODEL);
 }
 }
 }
 }
 log.error("No display model could be found.");
 return null;
}

This mechanism has been removed in 1.6, being subsumed into the class (see below). Now, the attributes on Request, ModelAccess ModelAccess
Session and Context are managed using code that is private to itself. Similarly, the code which gives priority to a Request model over a ModelAccess
Session model is uniformly implemented across the models.

It remains to be seen whether this uniformity can satisfy the various needs of the application. If not, at least the changes can all be made within a single
point of access.

The DAO layer

This mechanism is pervasive through the code, and remains quite useful. In it, a is created, with access to particular data models. WebappDaoFactory
This factory then can be used to create DAO objects which satisfy interfaces like , , or . Each of these IndividualDao OntologyDAO UserAccountsDAO
object implements a collection of convenience methods which are used to manipulate the backing data models.

Because the factory and each of the DAOs is an interface, alternative implementations can be written which provide

Optimization for Jena RDB models
Optimization for Jena SDB models
Filtering of restricted data

and more...

Initially, the may have been used only with the full Union model. But what if you want to use these DAOs only against asserted WebappDaoFactory
triples? Or only against the ABox? This led to the .OntModelSelector

OntModelSelectors

An provides a way to collect a group of Models and construct a . With slots for ABox, TBox, and Full model, an OntModelSelector WebappDaoFactory
 could provide a consistent view on assertions, or on inferences, or on the union. The also holds references to OntModelSelector OntModelSelector

a display model, an application metadata model, and a user accounts model, but these are more for convenience than flexibility.

Prior to release 1.6, , like s, were stored in attributes of the Context, Session, and Request. They have been subsumed OntModelSelectors OntModel
into the class.ModelAccess

Further, the semantics of the "standard" have changed, so they only act as facades before the Models store in . In OntModelSelectors ModelAccess
this way, if we make this call:

ModelAccess.on(session).setOntModel(ModelID.BASE_ABOX, someWeirdModel)

Then both of the following calls would return the same model:

ModelAccess.on(session).getOntModel(ModelID.BASE_ABOX);
ModelAccess.on(session).getBaseOntModelSelector().getABoxModel();

Again, this is a change in the semantics of OntModelSelectors. It insures a consistent representation of s across s, but it is OntModel OntModelSelector
certainly possible that existing code relies on an inconsistent model instead.

The RDF Service
TBD

Model makers and Model sources

The ModelAccess class
TBD - Show how it represents all of these distinctions. Describe the scope searching and masking, wrt set and get. Include the OntModelSelectors and
WADFs.

Initializing the Models
When VIVO starts up, objects are created to represent the various data models. The configuration models are created from the datasource OntModel
connection, usually to a MySQL database. The content models are created using the new RDFService layer. By default this also uses the datasource
connection, but it can be configured to use any SPARQL endpoint for its data.

Some of the smaller models are "memory-mapped" for faster access. This means that they are loaded entirely into memory at startup. Any changes made
to the memory image will be replicated in the original model.

The data in each model persists in the application datasource (usually a MySQL database), or in the RDFService. Also, data from disk files may be loaded
into the models. This may occur:

the first time that VIVO starts up,
if a model is found to be empty,
every time that VIVO starts up.

depending on the particular model.

Where are the RDF files?

In the distribution, the RDF files appear in and in . These directories are merged during the build process in the [vivo]/rdf [vitro]/webapp/rdf
usual way, with files in VIVO preferred over files in Vitro.

During the VIVO build process, the RDF files are copied to the VIVO home directory, and at runtime VIVO will read them from there.

The "first time"

For purposes of initialization, "first time" RDF files are loaded if the relevant data model contains no statements. Content models may also load "first time"
files if the RDFService detects that its SDB-based datastore has not been initialized.

Initializing Configuration models

Application metadata

Function: Describes the configuration of VIVO at this site. Many of the configuration options are obsolete.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-applicationMetadata

Source: the application Datasource (MySQL database) (memory-mapped)

If this is the first startup, read the files in rdf/applicationMetadata/firsttime.

In Vitro, there are none
In VIVO, initialSiteConfig.rdf, classgroups.rdf and propertygroups.rdf

User Accounts

Contains login credentials and assigned roles for VIVO users.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-userAccounts

Source: the application Datasource (MySQL database) (memory-mapped)

If this model is empty, read the files in rdf/auth/firsttime.

In Vitro, there are none (except during Selenium testing)
In VIVO, there are none

Every time, read the files in rdf/auth/everytime

In Vitro, permission_config.n3
In VIVO, there are none.

The Display model

This is the ABox for the display model, and contains the RDF statements that define managed pages, custom short views, and other items.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata

Source: the application Datasource (MySQL database) (memory-mapped)

If this model is empty, read the files in rdf/display/firsttime

In Vitro, application.owl, menu.n3, profilePageType.n3, pageList_editableStatements.n3
VIVO contains its own copy of menu.n3, which overrides the one in Vitro aboutPage.n3 menu.n3 PropertyConfig.n3
PropertyConfigSupp.n3

Every time, read the files in rdf/display/everytime

in Vitro, dataGetterLabels.n3 permissions.n3 displayModelListViews.rdf searchIndexerConfigurationVitro.n3
pageList.n3 vitroSearchProhibited.n3
In VIVO homePageDataGetters.n3 vivoConceptDataGetters.n3 localeSelectionGUI.n3 vivoListViewConfig.rdf
n3ModelChangePreprocessors.n3 vivoOrganizationDataGetters.n3 orcidInterfaceDataGetters.n3 vivoQrCodeDataGe
tter.n3 searchIndexerConfigurationVivo.n3 vivoSearchProhibited.n3

Display TBox

The TBox for the display model.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadataTBOX

Source: the application Datasource (MySQL database) (memory-mapped)

Every time, read the files in rdf/displayTbox/everytime.

In Vitro, displayTBOX.n3
In VIVO, there are none

DisplayDisplay

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata-displayModel

Source: the application Datasource (MySQL database) (memory-mapped)

Every time, read the files in rdf/displayDisplay/everytime

http://vitro.mannlib.cornell.edu/default/vitro-kb-applicationMetadata
http://vitro.mannlib.cornell.edu/default/vitro-kb-userAccounts
http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata
http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadataTBOX
http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata-displayModel

In Vitro, displayDisplay.n3
In VIVO, there are none.

Initializing Content models

base ABox

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-2

Source: named graph from the RDFService

If first setup, read the files in rdf/abox/firsttime

In Vitro, there are none
In VIVO, geopolitical.ver1.1-11-18-11.individual-labels.rdf

Every time, read the files in , and create named models in the RDFService. Add them as sub-models to the base ABox. If these rdf/abox/filegraph
files are changed or deleted, update the RDFService accordingly.

In Vitro, there are none
In VIVO documentStatus.owl academicDegree.rdf geopolitical.abox.ver1.1-11-18-11.owl us-states.rdf
continents.n3 validation.n3 dateTimeValuePrecision.owl vocabularySource.n3
Plus whatever data packages you may have added. See Managing Data Packages

base TBox

Name: http://vitro.mannlib.cornell.edu/default/asserted-tbox

Source: named graph from the RDFService (memory-mapped)

If first setup, read the files in rdf/tbox/firsttime (without subdirectories)

In Vitro, there are none
In VIVO, additionalHiding.n3 initialTBoxAnnotations.n3

Every time, read the files in , and create named models in the RDFService. Add them as sub-models to the base TBox. If these rdf/tbox/filegraph
files are changed or deleted, update the RDFService accordingly.

In Vitro, vitro-0.7.owl, vitroPublic.owl
In VIVO education.owl personTypes.n3 agent.owl event.owl process.owl appControls-temp.n3 geo-
political.owl publication.owl bfo-bridge.owl grant.owl relationship.owl bfo.owl linkSuppression.n3
relationshipAxioms.n3 classes-additional.owl location.owl research-resource-iao.owl clinical.owl object
-properties.owl research-resource.owl contact-vcard.owl object-properties2.owl research.owl contact.owl
object-properties3.owl role.owl data-properties.owl objectDomains.rdf sameAs.n3 dataDomains.rdf objectR
anges.rdf service.owl dataset.owl ontologies.owl skos-vivo.owl date-time.owl orcid-interface.n3 teac
hing.owl dateTimeValuePrecision.owl other.owl vitro-0.7.owl documentStatus.owl outreach.owl vitroPublic
.owl
Plus whatever ontology extensions you may have added

base Full

Source: a combination of base ABox and base TBox

inference ABox

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-inf

Source: named graph from the RDFService

inference TBox

Name: http://vitro.mannlib.cornell.edu/default/inferred-tbox

Source: named graph from the RDFService (memory-mapped)

inference Full

Source: a combination of inference ABox and inference TBox

union ABox

Source: a combination of base ABox and inference ABox

http://vitro.mannlib.cornell.edu/default/vitro-kb-2
https://wiki.lyrasis.org/display/VIVODOC19x/Managing+Data+Packages
http://vitro.mannlib.cornell.edu/default/asserted-tbox
http://vitro.mannlib.cornell.edu/default/vitro-kb-inf
http://vitro.mannlib.cornell.edu/default/inferred-tbox

union TBox

Source: a combination of base TBox and inference TBox

union Full

Source: a combination of union ABox and union TBox

	VIVO Data Models

