
XSLT Ingest Example: Gather
Gather

Start Previous Next

This step is performed by the transform which can be found in its entirety the folder. Figure 5 shows the first portion of this gather.xsl example/xslt
XSLT. We will now comment on the highlighted sections. In what follows, we will use [FnHm] to denote Figure n, Highlight m.

gather.xsl Fragment 1 - Figure 5

[F5H0] This is the usual XSLT boiler plate where namespaces and short hand prefixes are declared. In this example, the prefix will be used vfx
to identify functions that were created to support the ingest process.
[F5H1] Two required parameters that are file system paths that point to the accumulator files.
[F5H2] The usual output declaration including normalization of character sets.
[F5H3] A variable is declared here to define the namespace we use for individual URIs at Cornell. This will be used as a prefix for new URI local
names. You should change this variable in to reflect your VIVO instance. gather.xsl
[F5H4] A variable used to append a newline character to the output where needed. This is mainly for adjusting output for readability.
[F5H5-6] Two variable declarations that provide a means to access the pre-existing people and organization data from and . Per0.xml Org0.xml

Next we consider the highlights of the second half of the file. This part of the code handles filtering of the source, construction of the output gather.xsl
xml and resolving as many URIs as possible by comparing name information against the elements in in the case of people and against Per0.xml Org0.

 in the case of organizations. Figure 6 shows more of . xml gather.xsl

https://wiki.lyrasis.org/display/VIVO/A+Generalizable%2C+XSLT+Based+RDF+Ingest+Example
https://wiki.lyrasis.org/display/VIVO/XSLT+Ingest+Example%3A+The+Process
https://wiki.lyrasis.org/display/VIVO/XSLT+Ingest+Example%3A+Count

gather.xsl Fragment 2 - Figure 6

[F6H0] Establish which source rows will pass the rejection criteria filter and start an . EduRecord
[F6H1] Find any and all matching school URIs among the known organizations. Notice that the variable contains a space normalized school
copy of the and is further shifted to uppercase before comparison with each adjusted organization . The functio INSTITUTION name vfx:adjust
n, shown in Figure 7, applies the standard XPATH functions and . The variable is refers to a normalize-space upper-case schoolUri
sequence of 0 or more matching organization URIs.
[F6H2] Collect and create the required XML elements, applying to fix any white space issues in the source data. You may normalize-space
choose to add other normalizations at this point.
[F6H3] If contains a URI then use the first one; otherwise leave empty. If has more than one term then schoolUri edSchoolUri schoolUri
there are duplicate entries in . This is not the case for this example. However steps must be taken to prevent duplicates by properly Org0.xml
maintaining organization triples in VIVO.
[F6H4] Since we may not find a URI for the school or person, we include that as an empty element along with the name parts and netid of the
person who received the degree in the output XML for downstream remediation.

[F6H5] In this step we look for a matching person by calling the name matching function which will return a URI or the vfx:findMatchingPeople
empty string. We will describe this function shortly. Several versions of this function are included in the source code so that the reader can
experiment.
[F6H6] This shows the end of the transform with the inclusion of a file of auxiliary functions that contains the definitions of gather.xsl vfx:adjust
 and and other functions. The function , not shown here, is much stricter in terms of what vfx:findMatchingPeople vfx:findMatchingPeopleI
can match. It is included in the source code files so that the reader can compare it to the superior alternative . vfx:findMatchingPeople

auxfuncs.xsl Fragment 1 - Figure 7

The name comparison functions are built up from XPATH functions and are shown in the Figure 7. These functions can be found in
. example/xslt/auxfuncs.xsl

[F7H0] The function is meant to take an argument convert it to a string, normalize white space and uppercase all characters. Note vfx:adjust
that the call to ensures that if the argument is a tag that does not appear in the source XML the result will be an empty string. Note also string()
that white space normalization produces a string with no leading or trailing white space and all runs of white space characters in the argument will
be reduced to a single space in the result. This function could be augmented to remove other extraneous characters that might appear in source
data. For example, the period (.) character could be removed. The author has seen parentheses, colons, semicolons and numbers included in
name parts. This is a good function to experiment with.
[F7H1] The function is meant to return the first non-white space character in the argument. vfx:initial
[F7H2] The function compares two sets of name parts after is applied. Comparing this way is an equivalence vfx:namesMatch vfx:adjust
relation. It is reflexive, symmetric and transitive. This is the match function actually used in our example. The next function is included to show
what can happen with heuristic matching methods.
[F7H3] The function is compares two sets of name parts but only requires that the middle names match on the first vfx:namesMatchMNIO
initial. This is riskier but also more likely to find a match. Consider comparing Jon J Smyth‘ with Jon James Smyth‘. Clearly there is a risk in
declaring these to be equivalent. On the other hand, by treating this name pair as different we run the risk of creating two distinct s foaf:Person

where one would suffice. Use of this equivalence function is tempting. Although this relation is reflexive, symmetric and transitive, it is too coarse.
For example Jon J Smyth‘ matches Jon James Smyth‘ and Jon Joseph Smyth‘ but Jon James Smyth‘ and Jon Joseph Smyth‘ are clearly not
equivalent to a human reader but they are equivalent using this function.

The person name finding function illustrated in Figure 8 is in some ways just an elaborate version of the simpler organization match XPATH expression
described above in Hightlight 1 of Figure 6. Notice that the name part matching function does not contain the heuristic middle initial weakness described
above.

auxfuncs.xsl Fragment 2 - Figure 8

[F8H0] The variable is the list of all matching person nodes from whose s match the nonempty netid () of the nidMatches Per0.xml netid nid
person for whom we are searching. Note that there may be no matches. This is a normal XPATH predicate expression like that done for
organizations.
[F8H1] The variable is the list of all matching person nodes with no netid whose name parts match those of the person for whom we npMatches
are searching. There may be no matches in this case as well.
[F8H2] The variable will contain the name part match list when the search subject has no netid. Otherwise it will contain results npMatches
the netid match list . Use of the adjust function here deals with the case where a source only contains whitespace. nidMatches NETID
[F8H3] The function returns the first URI on the results list or the empty string. If there is more than one possible result then person triples have
not been well maintained in VIVO or there are textually different but equivalent names with the same URI.

Start Previous Next

https://wiki.lyrasis.org/display/VIVO/A+Generalizable%2C+XSLT+Based+RDF+Ingest+Example
https://wiki.lyrasis.org/display/VIVO/XSLT+Ingest+Example%3A+The+Process
https://wiki.lyrasis.org/display/VIVO/XSLT+Ingest+Example%3A+Count

	XSLT Ingest Example: Gather

