
1.

1.
2.

3.

1.
2.

a.

3.
4.

Art Institute of Chicago Use Cases

Access Policies via Models
Examples

Content Model API
Object Services

Examples
Challenges
Issues / limitations

Structural Validation
Examples
Issues / limitations

Use case: AIC type hierarchy
Structural Validation - Properties

Example
Limitations

Access Policies via Models

Title (Goal) Support Fedora 3-style object classes (content models) - Access Policies via Models

Primary Actor Repository architect & implementer

Scope Data architecture and access

Level High

Story (A paragraph or two describing what happens) As a repository manager,

I can associate access policies to "content models"

Examples

Given the object, I want to create some access policies that allow only users in imaging group to view and update that object.myns:image
If a user adds the mixin, access to that object, some of its properties, and mymix:published_web
the web_thumbnail, web_small and web_large datastreams is granted to web users.
If a user removes the mixin, access to the object, all its properties and children is revoked for all web users.mymix:published_web

Content Model API

Title (Goal) Support Fedora 3-style object classes (content models) - Content Model API

Primary Actor Repository architect & implementer

Scope Data architecture and access

Level High

Story (A paragraph or two describing what
happens)

As a repository manager,

I will be able to associate "content models" to objects via an API
I will be able to disassociate objects from "content models" via an API

In so doing, services associated with those "content models" are no longer available
on those objects

I will be able to associate objects with a single content model only
I will be able to define relationships between objects

Object Services

Title (Goal) Support Fedora 3-style object classes (content models) - Object Services

http://mynsimage
http://mymixpublished_web
http://mymixpublished_web

1.
a.

i.

2.
a.

a.

b.

c.

d.

1.

1.

a.
i.

b.
c.

1.
2.
3.

4.

Primary Actor Repository architect & implementer

Scope Data architecture and access

Level High

Story (A paragraph or two describing what
happens) As a repository manager,

I will be able to associate services with "content models"
Example services include the generation of image derivatives, and the serving of
images

As a repository user,
I will be able to access resources via services that are associated with defined
"content models"

Examples

Given the node above, I want to run a method (sequencer?) that creates/updates a thumbnail datastream under it every myns:image
time the master datastream is updated.
The type constraints assures that master is always present so if a new is created, a master child is expected to myns:image myns:image
run the method on.
Some users should be able to attach a pre-defined mixin to the same object; when that happens, a sequencer is mymix:published_web
there waiting to create aweb_thumbnail, a web_small and web_large datastreams as children of the object.
Conversely, if the user removes , the web_thumbnail,web_small and web_largedatastreams are destroyed. mymix:published_web

Challenges

How do we handle the creation process so that the object does not go through validation before all mandatory children are ingested?

Issues / limitations

A mixin can define a mandatory type, but the mixin itself is not mandatory. If some editor removes the mixin, that would break the thumbnail
method. In order to prevent that, access policies can be defined for who can remove or add a certain mixin; but for basic functionality not meant to
be ever removed, a primary type would solve the problem more easily and elegantly.

Stefano Cossu: tests should be made with transactions for Challenge #1 when https://www.pivotaltracker.com/s/projects/684825/stories/64058980
 is fixed. If I am able to create a node with a primary type or mix-in that defines a mandatory child , and that child as well within a transaction, and
the validation is performed ONLY after the transaction is committed, this would solve the issue.

Structural Validation

Title (Goal) Support Fedora 3-style object classes (content models) - Structural Validation

Primary Actor Repository architect & implementer

Scope Data architecture and access

Level High

Story (A paragraph or two
describing what happens)

As a repository manager,

I can define "content models" that ensure the presence of defined datastreams
A defined datastream has a defined name and a defined mime-type

I can define which type(s), name(s) and number of children or properties a Fedora node can have
Child nodes and properties introduced by a mix-in "content model" are removed when that mix-in is
un-assigned, if no other content models depend on them.

Examples

I have a asset type that is auto-assigned to assets ingested by Imaging department. myns:image
myns:image has mandatory properties and/or children such as a master datastream, of type or a subtype thereof.nt:file
myns:image assets can only have children of type. Ideally, that should be within a range of defined MIME types (not a critical feature nt:file nt:file
for now)
I need a validation mechanism that throws an error if an user adds or updates a child or property that doesn't conform to that definition.

http://mynsimage
http://mynsimage
http://mynsimage
http://mymixpublished_web
http://mymixpublished_web
https://wiki.lyrasis.org/display/~scossu
https://www.pivotaltracker.com/s/projects/684825/stories/64058980
http://mynsimage
http://mynsimage
http://ntfile
http://mynsimage
http://ntfile
http://ntfile

1.

2.
3.

a.

b.
c.

1.

1.

1.

Issues / limitations

The default primary type, , allows all Fedora nodes to have children of any type, with any name, in any number. There is no way to restrict nt:folder
that with Fedora's current tools.
The auto-assigned mixin type, , allows nodes to have properties of any type, with any name, in any number. Ditto as above. fedora:resource
If a mix-in is removed that defines some properties and/or child nodes, currently these properties/child nodes are not removed. It is not easy to
find which properties/child nodes were introduced by a content model, in order to "cleanly" remove it.

Bad solution: mirror the content model schema in the client systems that are adding/removing content models so they know which
properties/children can be removed along with the content model.
Better solution: expose content model schema via REST API methods (e.g. provide more details in /rest/fcr:nodetypes)
Another solution: provide a REST API method that automatically removes all properties/children before removing the content model (in
one transaction, so no mandatory constraints are violated).

Use case: AIC type hierarchy

att_D-AIC_JCR_classes.pdf

Structural Validation - Properties

Title (Goal) Support Fedora 3-style object classes (content models) - Structural Validation - Properties

Primary Actor Repository architect & implementer

Scope Data architecture and access

Level High

Story (A paragraph or two describing what happens) As a repository manager,

I can create "partial match" restrictions on content model properties

Example

Given the object, I want to make it able to have any number of metadata children. Children should be of type or a subtype myns:image myns:meta
thereof, and their name should start with meta_ (e.g. meta_exif, meta_geo, etc.)

Limitations

There is no way, even in CND, to achieve this.

http://ntfolder
http://fedoraresource
https://wiki.lyrasis.org/download/attachments/42795220/att_D-AIC_JCR_classes.pdf?version=1&modificationDate=1394739838691&api=v2
http://mynsimage
http://mynsmeta

	Art Institute of Chicago Use Cases

