
AIP Backup and Restore
AIP Backup & Restore for DSpace

1 Background & Overview
1.1 How does this differ from traditional DSpace Backups? Which Backup route is better?
1.2 How does this work help DSpace interact with DuraCloud?

2 Makeup and Definition of AIPs
2.1 AIPs are Archival Information Packages.
2.2 AIP Structure / Format

3 Running the Code
3.1 Exporting AIPs

3.1.1 Export Modes & Options
3.1.2 Exporting just a single AIP
3.1.3 Exporting AIP Hierarchy

3.1.3.1 Exporting Entire Site
3.2 Ingesting / Restoring AIPs

3.2.1 Ingestion Modes & Options
3.2.1.1 The difference between "Submit" and "Restore/Replace" modes

3.2.2 Submitting AIP(s) to create a new object
3.2.2.1 Submitting a Single AIP
3.2.2.2 Submitting an AIP Hierarchy

3.2.3 Restoring/Replacing using AIP(s)
3.2.3.1 Default Restore Mode
3.2.3.2 Restore, Keep Existing Mode
3.2.3.3 Force Replace Mode
3.2.3.4 Restoring Entire Site

4 Additional Packager Options
4.1 How to use these options

5 Configuration in 'dspace.cfg'
5.1 AIP Metadata Dissemination Configurations
5.2 AIP Ingestion Metadata Crosswalk Configurations
5.3 AIP Ingestion EPerson Configurations
5.4 AIP Configurations To Improve Ingestion Speed while Validating

6 Common Issues or Error Messages

Background & Overview
Additional background information available in the Open Repositories 2010 Presentation entitled Improving DSpace Backups, Restores & Migrations

As of DSpace 1.7, DSpace now can backup and restore all of its contents as a set of . This includes all Communities, Collections, Items, Groups AIP Files
and People in the system.

This feature came out of a requirement for DSpace to better integrate with , and other backup storage systems. One of these requirements is to DuraCloud
be able to essentially "backup" local DSpace contents into the cloud (as a type of offsite backup), and "restore" those contents at a later time.

Essentially, this means DSpace can export the entire hierarchy (i.e. bitstreams, metadata and relationships between Communities/Collections/Items) into a
relatively standard format (a METS-based,). This entire hierarchy can also be re-imported into DSpace in the same format (essentially a restore AIP format
of that content in the same or different DSpace installation).

Benefits for the DSpace community:

Allows one to more easily move entire Communities or Collections between DSpace instances.
Allows for a potentially more consistent backup of this hierarchy (e.g. to DuraCloud, or just to your own local backup system), rather than relying
on synchronizing a backup of your Database (stores metadata/relationships) and assetstore (stores files/bitstreams).
Provides a way for people to more easily get their data out of DSpace (whatever the purpose may be).
Provides a relatively standard format for people to migrate entire hierarchies (Communities/Collections) from one DSpace to another (or from
another system into DSpace).

How does this differ from traditional DSpace Backups? Which Backup route is better?

Traditionally, it has always been recommended to backup and restore DSpace's database and files (also known as the "assetstore") separately. This is
described in more detail in the section of the DSpace System Documentation. The traditional backup and restore route is still a Storage Layer
recommended and supported option.

However, the new AIP Backup & Restore option seeks to try and resolve many of the complexities of a traditional backup and restore. The below table
details some of the differences between these two valid Backup and Restore options.

 Traditional Backup & Restore
(Database and Files)

AIP Backup & Restore

Supported Backup
/Restore Types

Can Backup & Restore all
DSpace Content easily

Yes (Requires two backups/restores – one
for Database and one for Files)

Yes (Though, will not backup/restore items which are not officially "in archive")

http://www.slideshare.net/tdonohue/improving-dspace-backups-restores-migrations
https://wiki.lyrasis.org/display/DSDOC17/DSpace+AIP+Format
http://www.duracloud.org
https://wiki.lyrasis.org/display/DSDOC17/DSpace+AIP+Format
https://wiki.lyrasis.org/display/DSDOC17/Storage+Layer

1.
2.

Can Backup & Restore a
Single Community/Collection
/Item easily

No (It is possible, but requires a strong
understanding of DSpace database structure
& folder organization in order to only backup
& restore metadata/files belonging to that
single object)

Yes

Backups can be used to move
one or more Community
/Collection/Items to another
DSpace system easily.

No (Again, it is possible, but requires a
strong understanding of DSpace database
structure & folder organization in order to
only move metadata/files belonging to that
object)

Yes

Supported Object Types
During Backup & Restore

Supports backup/restore of all
Communities/Collections/Items
(including metadata, files,
logos, etc.)

Yes Yes

Supports backup/restore of all
People/Groups/Permissions

Yes Yes

Supports backup/restore of all
Collection-specific Item
Templates

Yes Yes

Supports backup/restore of all
Collection Harvesting settings
(only for Collections which pull
in all Items via OAI-PMH or
OAI-ORE)

Yes No (This is a known issue. All previously harvested Items will be restored, but the OAI-
PMH/OAI-ORE harvesting settings will be lost during the restore process.)

Supports backup/restore of all
Withdrawn (but not deleted)
Items

Yes Yes

Supports backup/restore of
Item Mappings between
Collections

Yes Yes (During restore, the AIP Ingester may throw a false "Could not find a parent
DSpaceObject" error (see), if it tries to restore an Common Issues or Error Messages
Item Mapping to a Collection that it hasn't yet restored. But this error can be safely
bypassed using the 'skipIfParentMissing' flag (see for Additional Packager Options
more details).

Supports backup/restore of all
in-process, uncompleted
Submissions (or those
currently in an approval
workflow)

Yes No (AIPs are only generated for objects which are completed and considered "in
archive")

Supports backup/restore of
Items using custom Metadata
Schemas & Fields

Yes Yes (Custom Metadata Fields will be automatically recreated. Custom Metadata
Schemas must be manually created first, in order for DSpace to be able to recreate
custom fields belonging to that schema. See for Common Issues or Error Messages
more details.)

Supports backup/restore of all
local DSpace Configurations
and Customizations

Yes (if you backup your DSpace entire
directory as part of backing up your files)

Not by default (unless your also backup parts of your DSpace directory – note, you
wouldn't need to backup the '[dspace]/assetstore' folder again, as those files are
already included in AIPs)

Based on your local institutions needs, you will want to choose the backup & restore process which is most appropriate to you. You may also find it
beneficial to use both types of backups on different time schedules, in order to keep to a minimum the likelihood of losing your DSpace installation settings
or its contents. For example, you may choose to perform a Traditional Backup once per week (to backup your local system configurations and
customizations) and an AIP Backup on a daily basis. Alternatively, you may choose to perform daily Traditional Backups and only use the AIP Backup as a
"permanent archives" option (perhaps performed on a weekly or monthly basis).

Don't Forget to Backup your Configurations and Customizations

If you choose to use the AIP Backup and Restore option, do not forget to also backup your local DSpace configurations and customizations. Depending on
how you manage your own local DSpace, these configurations and customizations are likely in one or more of the following locations:

[dspace] - The DSpace installation directory (Please note, if you also use the AIP Backup & Restore option, you do need to backup your not [d
 directory, as those files already exist in your AIPs).space]/assetstore

[dspace-source] - The DSpace source directory

How does this work help DSpace interact with DuraCloud?

This work is entirely about DSpace content objects to a location on a local filesystem. So, this work doesn't interact solely with , and exporting DuraCloud
could be used by any backup storage system to backup your DSpace contents.

In the initial DuraCloud work, the DuraCloud team is working on a way to "synchronize" DuraCloud with a local file folder. So, DuraCloud can be configured
to "watch" a given folder and automatically replicate its contents into the cloud.

Therefore, moving content from DSpace to DuraCloud would currently be a two-step process:

First, export AIPs describing that content from DSpace to a filesystem folder
Second, enable DuraCloud to watch that same filesystem folder and replicate it into the cloud.

http://www.duracloud.org

1.
2.

Similarly, moving content from DuraCloud back into DSpace would also be a two-step process:

First, you'd tell DuraCloud to replicate the AIPs from the cloud to a folder on your file system
Second, you'd ingest those AIPs back into DSpace

(These backup/restore processes may change as we go forward and investigate more use cases. This is just the initial plan.)

Makeup and Definition of AIPs

AIPs are Archival Information Packages.

AIP is a package describing in DSpace.one archival object
The may be a single , , , or (Site AIPs contain site-wide information). Bitstreams are archival object Item Collection Community Site
included in an Item's AIP.
Each AIP is logically self-contained, can be restored without rest of the archive. (So you could restore a single Item, Collection or
Community)
Collection or Community AIPs do include all child objects (e.g. Items in those Collections or Communities), as each AIP only not
describes object. However, these container AIPs do contain references (links) to all child objects. These references can be used by one
DSpace to automatically restore all referenced AIPs when restoring a Collection or Community.
AIPs are only generated for objects which are currently in the "in archive" state in DSpace. This means that in-progress, uncompleted
submissions are not described in AIPs and cannot be restored after a disaster. Permanently removed objects will also no longer be
exported as AIPs after their removal. However, withdrawn objects will continue to be exported as AIPs, since they are still considered
under the "in archive" status.
AIPs with identical contents will always have identical . This provides a basic means of validating whether the contents within checksums
an AIP have changed. For example, if a Collection's AIP has the same checksum at two different points in time, it means that Collection
has not changed during that time period.
AIP profile favors completeness and accuracy rather than presenting the semantics of an object in a standard format. It conforms to the
quirks of DSpace's internal object model rather than attempting to produce a universally understandable representation of the object.
When possible, an AIP tries to use common standards to express objects.
An AIP serve as a DIP (Dissemination Information Package) or SIP (Submission Information Package), especially when transferring can
custody of objects to another DSpace implementation.
In contrast to SIP or DIP, the AIP should include all available DSpace structural and administrative metadata, and basic provenance
information. AIPs also describe some basic system level information (e.g. Groups and People).

AIP Structure / Format

Generally speaking, an AIP is an Zip file containing a METS manifest and all related content bitstreams.

For more specific details of AIP format / structure, along with examples, please see DSpace AIP Format

Running the Code

Exporting AIPs

Export Modes & Options

All AIP Exports are done by using the Dissemination Mode (option) of the command.-d packager

There are two types of AIP Dissemination you can perform:

Single AIP (default, using option) - Exports just an AIP describing a single DSpace object. So, if you ran it in this default mode for a Collection, -d
you'd just end up with a single Collection AIP (which would not include AIPs for all its child Items)
Hierarchy of AIPs (using the or option) - Exports the requested AIP describing an object, plus the AIP for all child objects. -d --all -d -a
Some examples follow:

For a Site - this would export Communities, Collections & Items within the site into AIP files (in a provided directory)all
For a Community - this would export that Community and all SubCommunities, Collections and Items into AIP files (in a provided
directory)
For a Collection - this would export that Collection and all contained Items into AIP files (in a provided directory)
For an Item – this just exports the Item into an AIP as normal (as it already contains its Bitstreams/Bundles by default)

Exporting just a single AIP

To export in single AIP mode (default), use this 'packager' command template:

 [dspace]/bin/dspace packager -d -t AIP -e <eperson> -i <handle> <file-path>

for example:

 [dspace]/bin/dspace packager -d -t AIP -e admin@myu.edu -i 4321/4567 aip4567.zip

http://en.wikipedia.org/wiki/Checksum
https://wiki.lyrasis.org/display/DSDOC17/DSpace+AIP+Format

1.

2.

3.

The above code will export the object of the given handle (4321/4567) into an AIP file named "aip4567.zip". This will include any child objects for not
Communities or Collections.

Exporting AIP Hierarchy

To export an AIP hierarchy, use the (or) package parameter.-a --all

For example, use this 'packager' command template:

 [dspace]/bin/dspace packager -d -a -t AIP -e <eperson> -i <handle> <file-path>

for example:

 [dspace]/bin/dspace packager -d -a -t AIP -e admin@myu.edu -i 4321/4567 aip4567.zip

The above code will export the object of the given handle (4321/4567) into an AIP file named "aip4567.zip". In addition it would export all children objects
to the same directory as the "aip4567.zip" file. The child AIP files are all named using the following format:

File Name Format: <Obj-Type>@<Handle-with-dashes>.zip
e.g. COMMUNITY@123456789-1.zip, COLLECTION@123456789-2.zip, ITEM@123456789-200.zip
This general file naming convention ensures that you can easily locate an object to restore by its name (assuming you know its Object
Type and Handle).

Alternatively, if object doesn't have a Handle, it uses this File Name Format: (e.g. <Obj-Type>@internal-id-<DSpace-ID>.zip
ITEM@internal-id-234.zip)

AIPs are only generated for objects which are currently in the "in archive" state in DSpace. This means that in-progress, uncompleted submissions are not
described in AIPs and cannot be restored after a disaster.

Exporting Entire Site

To export an entire DSpace Site, pass the packager the Handle . For example, if your site prefix is "4321", you'd run a <site-handle-prefix>/0
command similar to the following:

 [dspace]/bin/dspace packager -d -a -t AIP -e admin@myu.edu -i 4321/0 sitewide-aip.zip

Again, this would export the DSpace Site AIP into the file "sitewide-aip.zip", and export AIPs for Communities, Collections and Items into the same all
directory as the Site AIP.

Ingesting / Restoring AIPs

Ingestion Modes & Options

Ingestion of AIPs is a bit more complex than Dissemination, as there are several different "modes" available:

Submit/Ingest Mode (option, default) – submit AIP(s) to DSpace in order to create a new object(s) (i.e. AIP is treated like a SIP – Submission -s
Information Package)
Restore Mode (option) – restore pre-existing object(s) in DSpace based on AIP(s). This also attempts to restore all handles and relationships -r
(parent/child objects). This is a specialized type of "submit", where the object is created with a known Handle and known relationships.
Replace Mode (option) – replace existing object(s) in DSpace based on AIP(s). This also attempts to restore all handles and relationships -r -f
(parent/child objects). This is a specialized type of "restore" where the contents of existing object(s) is replaced by the contents in the AIP(s). By
default, if a normal "restore" finds the object already exists, it will back out (i.e. rollback all changes) and report which object already exists.

Again, like export, there are two types of AIP Ingestion you can perform (using any of the above modes):

Single AIP (default) - Ingests just an AIP describing a single DSpace object. So, if you ran it in this default mode for a Collection AIP, you'd just
create a DSpace Collection from the AIP (but not ingest any of its child objects)
Hierarchy of AIPs (by including the or option after the mode) - Ingests the requested AIP describing an object, plus the AIP for all child --all -a
objects. Some examples follow:

For a Site - this would ingest Communities, Collections & Items based on the located AIP filesall
For a Community - this would ingest that Community and all SubCommunities, Collections and Items based on the located AIP files
For a Collection - this would ingest that Collection and all contained Items based on the located AIP files
For an Item – this just ingest the Item (including all Bitstreams & Bundles) based on the AIP file.

The difference between "Submit" and "Restore/Replace" modes

It's worth understanding the primary differences between a Submission (specified by parameter) and a Restore (specified by parameter).-s -r

Submission Mode (mode) - creates a new object (AIP is treated like a SIP)-s
By default, a new Handle is always assigned

However, you can force it to use the handle specified in the AIP by specifying as one of your -o ignoreHandle=false
parameters

By default, a new Parent object be specified (using the parameter). This is the location where the new object will be created.must -p
However, you can force it to use the parent object specified in the AIP by specifying as one of your -o ignoreParent=false
parameters

By default, will respect a Collection's Workflow process when you submit an Item to a Collection
However, you can specifically any workflow approval processes by specifying parameter.skip -w

Always adds a new Deposit License to Items
Always adds new DSpace System metadata to Items (includes new 'dc.date.accessioned', 'dc.date.available', 'dc.date.issued' and 'dc.
description.provenance' entries)

Restore / Replace Mode (mode) - restores a previously existing object (as if from a backup)-r
By default, the Handle specified in the AIP is restored

However, for restores, you can force a new handle to be generated by specifying as one of your -o ignoreHandle=true
parameters. (NOTE: Doesn't work for mode as the new object always retains the handle of the replaced object)replace

 Although a Restore/Replace does restore Handles, it will not necessarily restore the same internal IDs in your Database.
By default, the object is restored under the Parent specified in the AIP

However, for restores, you can force it to restore under a different parent object by using the parameter. (NOTE: Doesn't -p
work for mode, as the new object always retains the parent of the replaced object)replace

Always skips any Collection workflow approval processes when restoring/replacing an Item in a Collection
Never adds a new Deposit License to Items (rather it restores the previous deposit license, as long as it is stored in the AIP)
Never adds new DSpace System metadata to Items (rather it just restores the metadata as specified in the AIP)

Changing Submission/Restore Behavior

It is possible to change some of the default behaviors of both the Submission and Restore/Replace Modes. Please see the Additional Packager Options
section below for a listing of command-line options that allow you to override some of the default settings described above.

Submitting AIP(s) to create a new object

Submitting a Single AIP
AIPs treated as SIPs

This option allows you to essentially use an AIP as a SIP (Submission Information Package). The default settings will create a new DSpace object (with a
new handle and a new parent object, if specified) from your AIP.

To ingest a single AIP and create a new DSpace object under a parent of your choice, specify the (or) package parameter to the command. -p --parent
Also, note that you are running the in (submit) mode.packager -s

NOTE: This only ingests the single AIP specified. It does ingest all children objects.not

 [dspace]/bin/dspace packager -s -t AIP -e <eperson> -p <parent-handle> <file-path>

If you leave out the parameter, the AIP package ingester will attempt to install the AIP under the same parent it had before. As you are also specifying -p
the (submit) parameter, the will assume you want a new Handle to be assigned (as you are effectively specifying that you are submitting a -s packager n

 object). If you want the object to retain the Handle specified in the AIP, you can specify the option to force the packager to ew -o ignoreHandle=false
 ignore the Handle specified in the AIP.not

Submitting an AIP Hierarchy
AIPs treated as SIPs

This option allows you to essentially use a set of AIPs as SIPs (Submission Information Packages). The default settings will create a new DSpace object
(with a new handle and a new parent object, if specified) from each AIP

To ingest an AIP hierarchy from a directory of AIPs, use the (or) package parameter.-a --all

For example, use this 'packager' command template:

 [dspace]/bin/dspace packager -s -a -t AIP -e <eperson> -p <parent-handle> <file-path>

for example:

 [dspace]/bin/dspace packager -s -a -t AIP -e admin@myu.edu -p 4321/12 aip4567.zip

The above command will ingest the package named "aip4567.zip" as a child of the specified Parent Object (handle="4321/12"). The resulting object is
assigned a new Handle (since is specified). In addition, any child AIPs referenced by "aip4567.zip" are also recursively ingested (a new Handle is also -s
assigned for each child AIP).

Another example – (by using the Site Handle,):Ingesting a Top-Level Community <site-handle-prefix>/0

 [dspace]/bin/dspace packager -s -a -t AIP -e admin@myu.edu -p 4321/0 community-aip.zip

1.
2.

3.

The above command will ingest the package named "community-aip.zip" as a (i.e. the specified parent is "4321/0" which is a Site top-level community
Handle). Again, the resulting object is assigned a new Handle. In addition, any child AIPs referenced by "community-aip.zip" are also recursively ingested
(a new Handle is also assigned for each child AIP).

Restoring/Replacing using AIP(s)

Restoring is slightly different than just . When restoring, we make every attempt to restore the object as it (including its handle, submitting used to be
parent object, etc.).

There are currently three restore modes:

Default Restore Mode () = Attempt to restore object (and optionally children). Rollback all changes if any object is found to already exist.-r
Restore, Keep Existing Mode () = Attempt to restore object (and optionally children). If an object is found to already exist, skip over it (and -r -k
all children objects), and continue to restore all other non-existing objects.
Force Replace Mode () = Restore an object (and optionally children) and any existing objects in DSpace. Therefore, if an object -r -f overwrite
is found to already exist in DSpace, its contents are replaced by the contents of the AIP. WARNING: This mode is potentially dangerous as it will
permanently destroy any object contents that do not currently exist in the AIP. You may want to perform a secondary backup, unless you are sure
you know what you are doing!

Default Restore Mode

By default, the restore mode (option) will throw an error and rollback all changes if any object is found to already exist. The user will be informed if -r
which object already exists within their DSpace installation.

Restore a Single AIP: Use this 'packager' command template to restore a single object from an AIP (not including any child objects):

 [dspace]/bin/dspace packager -r -t AIP -e <eperson> <AIP-file-path>

Restore a Hierarchy of AIPs: Use this 'packager' command template to restore an object from an AIP along with all child objects (from their AIPs):

 [dspace]/bin/dspace packager -r -a -t AIP -e <eperson> <AIP-file-path>

For example:

 [dspace]/bin/dspace packager -r -a -t AIP -e admin@myu.edu aip4567.zip

Notice that unlike -s option (for submission/ingesting), the -r option does not require the Parent Object (-p option) to be specified if it can be determined
from the package itself.

In the above example, the package "aip4567.zip" is restored to the DSpace installation with the Handle provided within the package itself (and added as a
child of the parent object specified within the package itself). In addition, any child AIPs referenced by "aip4567.zip" are also recursively ingested (the -a
option specifies to also restore all child AIPs). They are also restored with the Handles & Parent Objects provided with their package. If any object is found
to already exist, all changes are rolled back (i.e. nothing is restored to DSpace)

Highly Recommended to Update Database Sequences after a Large Restore

In some cases, when you restore a large amount of content to your DSpace, the internal database counts (called "sequences") may get out of sync with
the Handles of the content you just restored. As a best practice, it is re-run the "update-sequences.sql" script on your highly recommended to always
DSpace database after a larger scale restore. This database script can be run while the system is online (i.e. no need to stop Tomcat or PostgreSQL). The
script can be found in the following locations for PostgreSQL and Oracle, respectively:
[dspace]/etc/postgres/update-sequences.sql
[dspace]/etc/oracle/update-sequences.sql
More Information on using Default Restore Mode with Community/Collection AIPs

Using the Default Restore Mode without the option, will only restore the for that specific Community or Collection. No child objects -a metadata
will be restored.
Using the Default Restore Mode with the option, will only successfully restore a Community or Collection if that object along with any child -a
objects (Sub-Communities, Collections or Items) do not already exist. In other words, if any objects belonging to that Community or Collection
already exist in DSpace, the Default Restore Mode will report an error that those object(s) could not be recreated. If you encounter this situation,
you will need to perform the restore using either the the (depending on whether you want to Restore, Keep Existing Mode or Force Replace Mode
keep or replace those existing child objects).

Restore, Keep Existing Mode

When the "Keep Existing" flag (option) is specified, the restore will attempt to skip over any objects found to already exist. It will report to the user that -k
the object was found to exist (and was not modified or changed). It will then continue to restore all objects which do not already exist.

One special case to note: If a Collection or Community is found to already exist, its child objects are also skipped over. So, this mode will not auto-restore
items to an existing Collection.

1.

2.

Restore a Hierarchy of AIPs: Use this 'packager' command template to restore an object from an AIP along with all child objects (from their AIPs):

 [dspace]/bin/dspace packager -r -a -k -t AIP -e <eperson> <AIP-file-path>

For example:

 [dspace]/bin/dspace packager -r -a -k -t AIP -e admin@myu.edu aip4567.zip

In the above example, the package "aip4567.zip" is restored to the DSpace installation with the Handle provided within the package itself (and added as a
child of the parent object specified within the package itself). In addition, any child AIPs referenced by "aip4567.zip" are also recursively restored (the -a
option specifies to also restore all child AIPs). They are also restored with the Handles & Parent Objects provided with their package. If any object is found
to already exist, it is skipped over (child objects are also skipped). All non-existing objects are restored.

Force Replace Mode

When the "Force Replace" flag (option) is specified, the restore will any objects found to already exist in DSpace. In other words, existing -f overwrite
content is deleted and then replaced by the contents of the AIP(s).

Potential for Data Loss

Because this mode actually existing content in DSpace, it is potentially dangerous and may result in data loss! You may wish to perform a destroys
secondary full backup (assetstore files & database) before attempting to replace any existing object(s) in DSpace.

Replace using a Single AIP: Use this 'packager' command template to replace a single object from an AIP (not including any child objects):

 [dspace]/bin/dspace packager -r -f -t AIP -e <eperson> <AIP-file-path>

Replace using a Hierarchy of AIPs: Use this 'packager' command template to replace an object from an AIP along with all child objects (from their AIPs):

 [dspace]/bin/dspace packager -r -a -f -t AIP -e <eperson> <AIP-file-path>

For example:

 [dspace]/bin/dspace packager -r -a -f -t AIP -e admin@myu.edu aip4567.zip

In the above example, the package "aip4567.zip" is restored to the DSpace installation with the Handle provided within the package itself (and added as a
child of the parent object specified within the package itself). In addition, any child AIPs referenced by "aip4567.zip" are also recursively ingested. They are
also restored with the Handles & Parent Objects provided with their package. If any object is found to already exist, its contents are replaced by the
contents of the appropriate AIP.

If any error occurs, the script attempts to rollback the entire replacement process.

Restoring Entire Site

In order to restore an entire Site from a set of AIPs, you must do the following:

Install a completely "fresh" version of DSpace by following the Installation instructions in the DSpace Manual
At this point, you should have a completely empty, but fully-functional DSpace installation. You will need to create an initial Administrator
user in order to perform this restore (as a full-restore can only be performed by a DSpace Administrator).

Once DSpace is installed, run the following command to restore all its contents from AIPs

 [dspace]/bin/dspace packager -r -a -f -t AIP -e <eperson> -i <site-handle-prefix>/0 /full/path/to/your
/site-aip.zip

Please note the following about the above restore command:

Notice that you are running this command in "Force Replace" mode (). This is necessary as your empty DSpace install will already include -r -f
a few default groups (Administrators and Anonymous) and your initial administrative user. You need to replace these groups in order to restore
your prior DSpace contents completely.
<eperson> should be replaced with the Email Address of the initial Administrator (who you created when you reinstalled DSpace).
<site-handle-prefix> should be replaced with your DSpace site's assigned Handle Prefix. This is equivalent to the setting handle.prefix
in your dspace.cfg
/full/path/to/your/site-aip.zip is the full path to the AIP file which represents your DSpace SITE. This file will be named whatever you
named it when you actually . All other AIPs are assumed to be referenced from this SITE AIP (in most cases, they should exported your entire site
be in the same directory as that SITE AIP).

Highly Recommended to Update Database Sequences after a Large Restore

https://wiki.lyrasis.org/display/DSDOC17/Installation

In some cases, when you restore a large amount of content to your DSpace, the internal database counts (called "sequences") may get out of sync with
the Handles of the content you just restored. As a best practice, it is re-run the "update-sequences.sql" script on your highly recommended to always
DSpace database after a larger scale restore. This database script can be run while the system is online (i.e. no need to stop Tomcat or PostgreSQL). The
script can be found in the following locations for PostgreSQL and Oracle, respectively:
[dspace]/etc/postgres/update-sequences.sql
[dspace]/etc/oracle/update-sequences.sql

Additional Packager Options

In additional to the various "modes" settings described under " " above, the AIP Packager supports the following packager options. These Running the Code
options allow you to better tweak how your AIPs are processed (especially during ingests/restores/replaces).

Option Ingest
or
Export

Default
Value

Description

createMe
tadataFi
elds

ingest-only true Tells the AIP ingester to automatically create any metadata fields which are found to be from the DSpace Metadata Registry. When 'true', missing
this means as each AIP is ingested, new fields may be added to the DSpace Metadata Registry if they don't already exist. When 'false', an AIP ingest
will fail if it encounters a metadata field that doesn't exist in the DSpace Metadata Registry. (NOTE: This will create missing DSpace Metadata not Sch

. If a schema is found to be missing, the ingest will always fail.)emas

ignoreHa
ndle

ingest-only Restore
/Replace
Mode
defaults to
'false',
Submit
Mode
defaults to
'true'

If 'true', the AIP ingester will ignore any Handle specified in the AIP itself, and instead create a new Handle during the ingest process (this is the
default when running in Submit mode, using the flag). If 'false', the AIP ingester attempts to restore the Handles specified in the AIP (this is the -s
default when running in Restore/replace mode, using the flag).-r

ignorePa
rent

ingest-only Restore
/Replace
Mode
defaults to
'false',
Submit
Mode
defaults to
'true'

If 'true', the AIP ingester will ignore any Parent object specified in the AIP itself, and instead ingest under a new Parent object (this is the default when
running in Submit mode, using the flag). The new Parent object must be specified via the flag (run for more help). If -s -p dspace packager -h
'false', the AIP ingester attempts to restore the object directly under its old Parent (this is the default when running in Restore/replace mode, using the

 flag).-r

includeB
undles

export-
only

defaults to
"all"

This option can be used to limit the Bundles which are exported to AIPs for each DSpace Item. By default, all file Bundles will be exported into Item
AIPs. You could use this option to limit the size of AIPs by only exporting certain Bundles. WARNING: any bundles not included in AIPs will obviously

 This option expects a comma separated list of bundle names (e.g. "ORIGINAL,LICENSE,CC_LICENSE,METADATA"), or be unable to be restored.
"all" if all bundles should be included.
(NOTE: If you choose to no longer export LICENSE or CC_LICENSE bundles, you will also need to disable the License Dissemination Crosswalks in
the configuration for the changes to take affect)aip.disseminate.rightsMD

manifest
Only

both false If 'true', the AIP Disseminator will export an AIP which only consists of the METS Manifest file (i.e. result will be a single 'mets.xml' file). This METS
Manifest contains URI references to all content files, but does contain any content files. not This option is experimental, and should never be set
to 'true' if you want to be able to restore content files.

passwords export-
only

false If 'true' (and the 'DSPACE-ROLES' crosswalk is enabled, see), then the AIP Disseminator will export #AIP Metadata Dissemination Configurations
user password hashes (i.e. encrypted passwords) into Site AIP's METS Manifest. This would allow you to restore user's passwords from Site AIP. If
'false', then user password hashes are not stored in Site AIP, and passwords cannot be restored at a later time.

skipIfPa
rentMiss
ing

import-
only

false If 'true', ingestion will skip over any "Could not find a parent DSpaceObject" errors that are encountered during the ingestion process (Note: those
errors will still be logged as "warning" messages in your DSpace log file). If you are performing a full site restore (or a restore of a larger Community
/Collection hierarchy), you may encounter these errors if you have a larger number of Item mappings between Collections (i.e. Items which are
mapped into several collections at once). When you are performing a recursive ingest, skipping these errors should not cause any problems. Once
the missing parent object is ingested it will automatically restore the Item mapping that caused the error. For more information on this "Could not find
a parent DSpaceObject" error see .Common Issues or Error Messages

unauthor
ized

export-
only

unspecified If 'skip', the AIP Disseminator will skip over any unauthorized Bundle or Bitstream encountered (i.e. it will not be added to the AIP). If 'zero', the AIP
Disseminator will add a Zero-length "placeholder" file to the AIP when it encounters an unauthorized Bitstream. If unspecified (the default value), the
AIP Disseminator will throw an error if an unauthorized Bundle or Bitstream is encountered.

updatedA
fter

export-
only

unspecified This option works as a basic form of "incremental backup". This option requires that an is specified. When specified, the AIP ISO-8601 date
Disseminator will only export Item AIPs which have a last-modified date the specified ISO-8601 date. This option has no affect on the export of after
Site, Community or Collection AIPs as DSpace does not record a last-modified date for Sites, Communities or Collections. For example, when this
option is specified during a full-site export, the AIP Disseminator will export the Site AIP, all Community AIPs, all Collection AIPs, and only Item AIPs
modified after that date and time.

validate both Export
defaults to
'true',
Ingest
defaults to
'false'

If 'true', every METS file in AIP will be validated before ingesting or exporting. By default, DSpace will validate everything on export, but will skip
validation during import. Validation on export will ensure that all exported AIPs properly conform to the METS profile (and will throw errors if any do
not). Validation on import will ensure every METS file in every AIP is first validated before importing into DSpace (this will cause the ingestion
processing to take longer, but tips on speeding it up can be found in the " " section AIP Configurations To Improve Ingestion Speed while Validating
below). DSpace recommends minimally validating AIPs on export. Ideally, you should validate both on export and import, but import validation is
disabled by default in order to increase the speed of AIP restores.

How to use these options

These options can be passed in two main ways:

From the Command Line

From the command-line, you can add the option to your command by using the or parameter.-o --option

 [dspace]/bin/dspace packager -r -a -t AIP -o [option1-value] -o [option2-value] -e admin@myu.edu aip4567.zip

http://en.wikipedia.org/wiki/ISO_8601

For example:

 [dspace]/bin/dspace packager -r -a -t AIP -o ignoreParent=false -o createMetadataFields=false -e admin@myu.edu
aip4567.zip

Via the Java API call

If you are programmatically calling the from your own custom script, you can specify these org.dspace.content.packager.DSpaceAIPIngester
options via the class.org.dspace.content.packager.PackageParameters

As a basic example:

PackageParameters params = new PackageParameters;
params.addProperty("createMetadataFields", "false");
params.addProperty("ignoreParent", "true");

Configuration in 'dspace.cfg'

The following new configurations relate to AIPs:

AIP Metadata Dissemination Configurations

The following configurations allow you to specify what metadata is stored within each METS-based AIP. In 'dspace.cfg', the general format for each of
these settings is:

aip.disseminate.<setting> = <mdType>:<DSpace-crosswalk-name> [, ...]
<setting> is the setting name (see below for the full list of valid settings)
<mdType> is optional. It allows you to specify the value of the @MDTYPE or @OTHERMDTYPE attribute in the corresponding METS
element.
<DSpace-crosswalk-name> is required. It specifies the name of the DSpace Crosswalk which should be used to generate this metadata.
Zero or more may be specified for each setting<label-for-METS>:<DSpace-crosswalk-name>

AIP Metadata Recommendations

It is recommended to use the default settings when generating AIPs. DSpace can only restore information that is included within an AIP. minimally
Therefore, if you choose to no longer include some information in an AIP, DSpace will no longer be able to restore that information from an AIP backup

The default settings in 'dspace.cfg' are:

aip.disseminate.techMD - Lists the DSpace Crosswalks (by name) which should be called to populate the section of the METS <techMD>
file within the AIP (Default:)PREMIS, DSPACE-ROLES

The crosswalk generates PREMIS metadata for the object specified by the AIPPREMIS
The crosswalk exports DSpace Group / EPerson information into AIPs in a DSpace-specific XML format. Using this DSPACE-ROLES
crosswalk means that AIPs can be used to recreated Groups & People within the system. (NOTE: The crosswalk should DSPACE-ROLES
be used alongside the crosswalk if you also wish to restore the that Groups/People have within the System. METSRights permissions
See below for more info on the crosswalk.)METSRights

aip.disseminate.sourceMD - Lists the DSpace Crosswalks (by name) which should be called to populate the section of the <sourceMD>
METS file within the AIP (Default:)AIP-TECHMD

The AIP-TECHMD Crosswalk generates technical metadata (in DIM format) for the object specified by the AIP
aip.disseminate.digiprovMD - Lists the DSpace Crosswalks (by name) which should be called to populate the section of <digiprovMD>
the METS file within the AIP (Default:)None
aip.disseminate.rightsMD - Lists the DSpace Crosswalks (by name) which should be called to populate the section of the <rightsMD>
METS file within the AIP (Default: DSpaceDepositLicense:DSPACE_DEPLICENSE, CreativeCommonsRDF:DSPACE_CCRDF,

)CreativeCommonsText:DSPACE_CCTEXT, METSRights
The crosswalk ensures the DSpace Deposit License is referenced/stored in AIPDSPACE_DEPLICENSE
The crosswalk ensures any Creative Commons RDF Licenses are reference/stored in AIPDSPACE_CCRDF
The crosswalk ensures any Creative Commons Textual Licenses are referenced/stored in AIPDSPACE_CCTEXT
The crosswalk ensures that Permissions/Rights on DSpace Objects (Communities, Collections, Items or Bitstreams) are METSRights
referenced/stored in AIP. Using this crosswalk means that AIPs can be used to restore permissions that a particular Group or Person
had on a DSpace Object. (NOTE: The crosswalk should always be used in conjunction with the crosswalk METSRights DSPACE-ROLES
(see above) or a similar crosswalk. The crosswalk can only restore permissions, and cannot re-create Groups or EPeople METSRights
in the system. The can actually re-create the Groups or EPeople as needed.)DSPACE-ROLES

aip.disseminate.dmd - Lists the DSpace Crosswalks (by name) which should be called to populate the section of the METS file <dmdSec>
within the AIP (Default: MODS, DIM)

The MODS crosswalk translates the DSpace descriptive metadata (for this object) into MODS. As MODS is a relatively "standard"
metadata schema, it may be useful to include a copy of MODS metadata in your AIPs if you should ever want to import them into
another (non-DSpace) system.
The DIM crosswalk just translates the DSpace internal descriptive metadata into an XML format. This XML format is proprietary to
DSpace, but stores the metadata in a format similar to Qualified Dublin Core.

AIP Ingestion Metadata Crosswalk Configurations

The following configurations allow you to specify what DSpace Crosswalks are used during the ingestion/restoration of AIPs. These configurations also
allow you to ignore areas of the METS file (in the AIP) if you do not want that area to be restored.

In , the general format for each of these settings is:dspace.cfg

mets.dspaceAIP.ingest.crosswalk.<mdType> = <DSpace-crosswalk-name>
<mdType> is the type of metadata as specified in the METS file. This corresponds to the value of the @MDTYPE attribute (of that
metadata section in the METS). When the @MDTYPE attribute is "OTHER", then the <mdType> corresponds to the @OTHERMDTYPE
attribute value.
<DSpace-crosswalk-name> specifies the name of the DSpace Crosswalk which should be used to ingest this metadata into DSpace.
You can specify the "NULLSTREAM" crosswalk if you specifically want this metadata to be ignored (and skipped over during ingestion).

By default, the settings in are:dspace.cfg

mets.dspaceAIP.ingest.crosswalk.DSpaceDepositLicense = NULLSTREAM
mets.dspaceAIP.ingest.crosswalk.CreativeCommonsRDF = NULLSTREAM
mets.dspaceAIP.ingest.crosswalk.CreativeCommonsText = NULLSTREAM

The above settings tell the ingester to any metadata sections which reference DSpace Deposit Licenses or Creative Commons Licenses. These ignore
metadata sections can be safely ignored as long as the "LICENSE" and "CC_LICENSE" bundles are included in AIPs (which is the default setting). As the
Licenses are included in those Bundles, they will already be restored when restoring the bundle contents.

More Info on Default Crosswalks used

If unspecified in the above settings, the AIP ingester will automatically use the Crosswalk which is named the same as the @MDTYPE or
@OTHERMDTYPE attribute for the metadata section. For example, a metadata section with an @MDTYPE="PREMIS" will be processed by the DSpace
Crosswalk named "PREMIS".

AIP Ingestion EPerson Configurations

The following setting determines whether the AIP Ingester should create an EPerson (if necessary) when attempting to restore or ingest an Item whose
Submitter cannot be located in the system. By default it is set to "false", as for AIPs the creation of EPeople (and Groups) is generally handled by the DSPA

 crosswalk (see for more info on crosswalk.)CE-ROLES #AIP Metadata Dissemination Configurations DSPACE-ROLES

mets.dspaceAIP.ingest.createSubmitter = false

AIP Configurations To Improve Ingestion Speed while Validating

It is recommended to validate all AIPs on ingestion (when possible). But validation can be extremely slow, as each validation request first must download
all referenced Schema documents from various locations on the web (sometimes as many as 10 schemas may be necessary to download in order to
validate a single METS file). To make matters worse, the same schema will be re-downloaded each time it is used (i.e. it is not cached locally). So, if you
are validating just 20 METS files which each reference 10 schemas, that results in 200 download requests.

In order to perform validations in a speedy fashion, you can pull down a local copy of schemas. Validation will then use this local cache, which can all
sometimes increase the speed up to 10 x.

To use a local cache of XML schemas when validating, use the following settings in 'dspace.cfg'. The general format is:

mets.xsd.<abbreviation> = <namespace> <local-file-name>
<abbreviation> is a unique abbreviation (of your choice) for this schema
<namespace> is the Schema namespace
<local-file-name> the full name of the cached schema file (which should reside in your directory, [dspace]/config/schemas/
by default this directory does not exist – you will need to create it)

The default settings are all commented out. But, they provide a full listing of all schemas currently used during validation of AIPs. In order to utilize them,
uncomment the settings, download the appropriate schema file, and save it to your directory (by default this directory [dspace]/config/schemas/
does not exist – you will need to create it) using the specified file name:

#mets.xsd.mets = http://www.loc.gov/METS/ mets.xsd
#mets.xsd.xlink = http://www.w3.org/1999/xlink xlink.xsd
#mets.xsd.mods = http://www.loc.gov/mods/v3 mods.xsd
#mets.xsd.xml = http://www.w3.org/XML/1998/namespace xml.xsd
#mets.xsd.dc = http://purl.org/dc/elements/1.1/ dc.xsd
#mets.xsd.dcterms = http://purl.org/dc/terms/ dcterms.xsd
#mets.xsd.premis = http://www.loc.gov/standards/premis PREMIS.xsd
#mets.xsd.premisObject = http://www.loc.gov/standards/premis PREMIS-Object.xsd
#mets.xsd.premisEvent = http://www.loc.gov/standards/premis PREMIS-Event.xsd
#mets.xsd.premisAgent = http://www.loc.gov/standards/premis PREMIS-Agent.xsd
#mets.xsd.premisRights = http://www.loc.gov/standards/premis PREMIS-Rights.xsd

Common Issues or Error Messages

The below table lists common fixes to issues you may encounter when backing up or restoring objects using AIP Backup and Restore.

Issue /
Error
Message

How to Fix this Problem

Ingest
/Restore
Error: "Group
Administrator
already
exists"

If you receive this problem, you are likely attempting to , but are not running the command in Force Replace Mode (). Please see the section on Restore an Entire Site -r -f Re
 for more details on the flags you should be using.storing an Entire Site

Ingest
/Restore
Error:
"Unknown
Metadata
Schema
encountered
(mycustomsc
hema)"

If you receive this problem, one or more of your Items is using a custom metadata schema which DSpace is currently not aware of (in the example, the schema is named
"mycustomschema"). Because DSpace AIPs do not contain enough details to recreate the missing Metadata Schema, you must create it manually via the DSpace Admin UI. Pl
ease note that you only need to create the Schema. You do not need to manually create all the fields belonging to that schema, as DSpace will do that for you as it

 Once the schema is created in DSpace, re-run your restore command. DSpace will automatically re-create all fields belonging to that custom metadata restores each AIP.
schema as it restores each Item that uses that schema.

Ingest Error:
"Could not
find a parent
DSpaceObjec
t referenced
as 'xxx/xxx'"

When you encounter this error message it means that an object could not be ingested/restored as it belongs to a object which doesn't currently exist in your DSpace parent
instance. During a full restore process, this error can be skipped over and treated as a warning by specifying the 'skipIfParentMissing=true' option (see Additional Packager

). If you have a larger number of Items which are mapped to multiple Collections, the AIP Ingester will sometimes attempt to restore an item mapping before the Options Collect
 has been restored (thus throwing this error). Luckily, this is not anything to be concerned about. As soon as the Collection is restored, the Item Mapping which ion itself

caused the error will also be automatically restored. So, if you encounter this error during a full restore, it is safe to bypass this error message using the
'skipIfParentMissing=true' option. All your Item Mappings should still be restored correctly.

	AIP Backup and Restore

