
GSOC10 - Backport of DSpace 2 Storage Services API for
DSpace 1.x
Backport of DSpace 2 Storage Services API for DSpace 1.x
Student: Andrius Blažinskas
Mentor: Mark Diggory

Abstract
DSpace 2.0 storage mechanism provides convenient way to store DSpace contents in various storage solutions. It is based on set of interfaces for which
various implementations are possible and some beta releases already exist (Jackrabbit, Fedora, etc). DSpace 2.0 is in its early stages of development and
DSpace 1.x releases yet can not take advantage of this new mechanism. To fix this, it is necessary to port DSpace 2.0 storage interfaces to 1.x. I propose
implementing this backport. – Andrius Blažinskas

Relevant modules/classes

Module
/class
name

Description/Comments Source code

dspace-
api

DSpace API http://scm.dspace.org/svn/repo/dspace/trunk
/dspace-api

dspace-
xmlui

XMLUI (Manakin) http://scm.dspace.org/svn/repo/dspace/trunk
/dspace-xmlui

storage-
api

Constitute of DSpace 2 storage interfaces. Will be referenced from dspace-xmlui and other modules
which will use new storage mechanism. Subject to change. (heavily refactored - moved from Update:
mixin solution to services concept)

http://scm.dspace.org/svn/repo/modules/dspace-
storage/trunk/api/

storage-
legacy

Module will implement storage-api interfaces. Basically it will be the shim allowing modules
to access DSpaceObjects (in dspace-api) using new storage-api.

http://scm.dspace.org/svn/repo/modules/storage-
legacy/

dspace-
services

DSpace services module. DSpace services framework will be used to manage and gain access to
storage-api implementations.

http://scm.dspace.org/svn/repo/modules/dspace-
services/

ProvidedS
torageSer
vice

Class which acts as a mediator between caller and storage service implementations. However, its usage
is questionable. (since dspace-storage-api has been refactored and instead of mixin solution Update:
services way there chosen, this class or its modifications most likely will not be used.)

http://scm.dspace.org/svn/repo/modules/dspace-
storage/trunk/impl/src/main/java/org/dspace
/services/storage/ProvidedStorageService.java

Development plan
Analysis part:

Analysis of dspace-api module
Analysis of dspace-services module
Deeper review of spring usage in DSpace
Analysis of dspace-database module
Analysis of dspace-storage-db-2.0.x module
Analysis of AIP prototype

dspace-api adaptation to changing needs:
Evaluation and incorporation of changes described at https://wiki.duraspace.org/display/DSPACE/GSoC+Collaboration+Scratchpad
Implementation of changes decided during commiter/student meetings

Implementation of storage-legacy module
dspace-xmlui relation to storage-api
Creation of java documentation
...

Evolution of storage-api
Recommended changes to "existing" DSpace 2 storage-api:

"StorageProperty[] parameters should be dropped from the StorageEntity object all together." [DSPACE:2]
"StorageProperty service methods for performing CRUD operations on Storage properties be maintained on a separate mixin interface."
[DSPACE:2]
"StorageRelation be removed from the object model and relations be captured only by attaching StorageEntities as "values" of
StorageProperties." [DSPACE:2]
"... remove methods like getEnititesAtLocation("/community/collection") and would recommend the use of the Search API instead for the
retrieval..."

http://scm.dspace.org/svn/repo/dspace/trunk/dspace-api
http://scm.dspace.org/svn/repo/dspace/trunk/dspace-api
http://scm.dspace.org/svn/repo/dspace/trunk/dspace-xmlui
http://scm.dspace.org/svn/repo/dspace/trunk/dspace-xmlui
http://scm.dspace.org/svn/repo/modules/dspace-storage/trunk/api/
http://scm.dspace.org/svn/repo/modules/dspace-storage/trunk/api/
http://scm.dspace.org/svn/repo/modules/storage-legacy/
http://scm.dspace.org/svn/repo/modules/storage-legacy/
http://scm.dspace.org/svn/repo/modules/dspace-services/
http://scm.dspace.org/svn/repo/modules/dspace-services/
http://scm.dspace.org/svn/repo/modules/dspace-storage/trunk/impl/src/main/java/org/dspace/services/storage/ProvidedStorageService.java
http://scm.dspace.org/svn/repo/modules/dspace-storage/trunk/impl/src/main/java/org/dspace/services/storage/ProvidedStorageService.java
http://scm.dspace.org/svn/repo/modules/dspace-storage/trunk/impl/src/main/java/org/dspace/services/storage/ProvidedStorageService.java
https://wiki.duraspace.org/display/DSPACE/GSoC+Collaboration+Scratchpad

"Mapping a prefix to the provider should warrant needing a separate interface to be implemented. That could just be part of assigning the
StorageService to the map it is cached in the ProvidedStorageService."

Update: after long discussions on how dspace-storage-api should look like, it was chosen to refactor whole api and move from mixin solution to services
concept, thus some of initial proposals on api changes does not reflect in current model implementation.

Proposed dspace-storage-api
Most current basic dspace-storage-api implementation class diagram provided below:

blocked URL

Short reference history how dspace-storage-api class diagram evolved during discussions can be found here: (PNG files only).http://andriusb.labt.lt/gsoc/

Provided api will evolve further, but most likely that basic components provided in diagram won't change or only minor changes can be introduced. Where
are plans on incorporating interfaces for indexing, search and ContentModel services.

Backporting strategies
There are different ways to backport dspace-storage into DSpace 1.x, some of these are described here.

Since DSpace 1.x model data is mainly accessed through particular DSpace 1.x entities (Community, Collection, Item, Bundle, Bitstream,
BitstreamFormat), new storage mechanism somehow will interact with them. There was discussions (during IRC meetings) on whether DSpaceObjects
should be backed by dspace-storage or is it something what should be "covered over" by dspace-storage.

Backing DSpaceObjects by dspace-storage allows immediate effect since all current modules uses these entities. However, this approach also
involves changing internals of these entities, which opens possibility to introduce bugs affecting everything. This way created storage-legacy
module would probably have to overtake the most DSpaceObjects internals which also are coupled back with dspace-api (authorization etc.).
DSpaceObjects "cover over" by dspace-storage, if correctly implemented, is a cleaner choice, since changes in dspace-api can be
avoided. storage-legacy module in this case would act only as a shim, providing access to dspace-api through storage-api. Conceptually, such
solution probably is bad (storage logics should reside in storage-legacy), however it is a good "temporary" measure helping in moving DSpace 1.x
to using new storage api.

Proposed backport strategy

Shim or "cover over" solution is chosen as backporting strategy. Diagram below describes it in more detail.

Elements in red are being implemented.

Update: since dspace-storage-api was moved from mixin solution to services, class ProvidedStorageService is replaced with EntityStorageService,
PropertyStorageService and BinaryStorageService.

References
1. GSOC 2010 proposal: Backport of DSpace 2 Storage Services API for DSpace 1.x, http://andriusb.labt.lt/gsoc/2010/dspace/proposal1.html
2. GSoC Collaboration Scratchpad, https://wiki.duraspace.org/display/DSPACE/GSoC+Collaboration+Scratchpad

http://andriusb.labt.lt/gsoc/storage-arch_v10.png
http://andriusb.labt.lt/gsoc/
http://ab.labt.lt/gsoc/2010/dspace/proposal1.html
https://wiki.duraspace.org/display/DSPACE/GSoC+Collaboration+Scratchpad

	GSOC10 - Backport of DSpace 2 Storage Services API for DSpace 1.x

