Refactoring MediaFilterManager for greater reuse and
flexibility

Refactoring MediaFilterManager for greater reuse and flexibility

This tutorial will cover the refactoring of the MediaFilter framework for DSpace, freeing Mediafilter configuration to be reused on other parts of the
codebase.

The Goals of this tutorial will exemplify the general process that should be applied in refactoring most any part of the codebase to use the DSpace Service
Manager.

1. Analyze Old Code to Identify DOmain Model and Business Logic of the Application

2. Create Domain Level Objects and Spring Configuration
3. Abandon original Plugin or hardcoded configuration Approaches, replacing reading of configuration with behavior that is not bound to

configuration.
What is the problem we can identify with MediaFilterManager

1. Configuration of the MediaFilters is bound to the execution of the Main method of the class
2. The List of FormatFilters and their configuration are both private, the configuration is held separately fromt eh objects themselves.

3. is hardcoded to a

Configuration of MediaFilters is bound to the execution of the main method:

/lretrieve list of all enabled nedia filter plugins!
String enabl edPl ugi ns = Confi gurati onManager . get Property(MEDI A_FI LTER PLUG NS_KEY) ;
filterNanes = enabl edPl ugins.split(",\\s*");

}

/linitialize an array of our enabled filters
List<FornatFilter> filterList = new ArrayLi st<FormatFilter>();

//set up each filter
for(int i=0; i< filterNanes.length; i++)
{
//get filter of this nane & add to list of filters
FormatFilter filter = (FormatFilter) Plugi nManager. get NanmedPl ugi n(FormatFilter.class, filterNanes
[i1);
if(filter==null)
{
Systemerr. println("\nERROR Unknown Medi aFilter specified (either fromconmmand-line or in
dspace.cfg): '" + filterNames[i] + "'");
Systemexit(1);
}

el se

{
filterList.add(filter);

String filterdassNane = filter.getC ass().getNane();
String plugi nName = nul | ;

/11f this filter is a Sel fNanmedPl ugin,
//then the input formats it accepts nay differ for
// each "named" plugin that it defines.
/1 So, we have to look for every key that fits the
//following format: filter.<class-name>. <pl ugi n-nane>. i nput Fornats
i f(Sel f NamedPl ugi n. cl ass. i sAssi gnabl eFron(filter.getd ass()))
{
/1 Get the plugin instance name for this class
pl ugi nName = ((Sel f NamedPl ugin) filter).getPl uginlnstanceNane();

//Retrieve our list of supported formats from dspace.cfg
/| For Sel f NanedPl ugi ns, format of key is:
/1 filter.<class-nanme>. <pl ugi n-nane>. i nput Fornat s
/I For other MediaFilters, format of key is:
/1 filter.<class-nane>.inputFornats
String formats = Confi gurati onManager. get Property(
FILTER PREFI X + "." + filterC assNane +
(plugi nNane! =null ? "." + pluginNane : "") +
" " + | NPUT_FORVATS_SUFFI X) ;

//add to internal map of filters to supported formats
if (formats !'= null)
{
/] For Sel f NanedPl ugi ns, map key is:
/'l <cl ass- nane><separ at or ><pl ugi n- nane>
/] For other MediaFilters, map key is just:
/'l <cl ass- nanme>
filterFormats. put(filterd assNane +
(pl ugi nNane! =nul | ? FILTER PLUG N_SEPARATOR + pl ugi nNane : ""),
Arrays. asList(formats.split(",[\\s]*")));

Y/ lend if filter!=null
}//end for

Identify the structure of the hardcoded configuration that will need to be undone:

1. List of Classnames are in "filter.plugins" property in DSpace configuration

2. List of Input BitstreamFormats that are supported by the filter are configured as a lookup of individual filter property lists "filter.[~mdiggory:FILTER-
PLUGIN-CLASS]inputFormats";

List of Format Strings is maintained separately from the fitleres themselves, thus we have two in memory "lookup lists" to deal with in mediafilter manager

pl ugi n. naned. or g. dspace. app. nedi afilter. FormatFilter =\
org. dspace. app. medi afilter. PDFFilter = PDF Text Extractor, \
org. dspace. app. medi afi | ter. HTM.Fi | ter HTML Text Extractor, \
org. dspace. app. medi afilter. WrdFilter = Wrd Text Extractor, \
org. dspace. app. nedi afi | t er. Power Poi nt Fi | ter = Power Poi nt Text Extractor, \
org. dspace. app. nedi afil ter. JPEGFi | ter = JPEG Thunbnail, \
or g. dspace. app. medi afi |l ter. BrandedPrevi enJPEGFi | ter = Branded Previ ew JPEG

#Configure each filter's input format(s)

filter.org.dspace. app. medi afilter.PDFFilter.inputFormats = Adobe PDF

filter.org. dspace. app. nedi afilter. HTM.Fil ter.input Formats = HTM., Text

filter.org.dspace. app. mediafilter. WrdFilter.inputFormats = Mcrosoft Wrd

filter.org.dspace. app. nedi afilter. PowerPointFilter.inputFormats = M crosoft Powerpoint, Mcrosoft Powerpoint XM
filter.org.dspace. app. nedi afilter.JPEGFi | ter.inputFormats = BMP, G F, JPEG inmage/png

filter.org.dspace. app. nedi afilter. BrandedPrevi ewd PEGFi | ter.input Formats = BMP, G F, JPEG i nmage/png

Problems we may observe

® Filter formats are complex string requiring parsing by regular expression syntax.

® Names of BitstreamFormats are used as identifiers, but nothing in DSpace enforces that BitstreamFormat names need to be unique.

® Further configuration for each MediaFilter is not possible, if you want greater configurablity, you need to hardwire it into your MediaFilter
implementation.

® MediaFilterManager is overly controlling of the Flltering Process, It would be better to let the Filters themselves have more decison making
capabilities.

Goals of Spring Configuration
® Create independent configuration of each MediaFilter
® Allow Spring to Provide Autowiring capabilities to inject the Filters for us
* Allow the MediaFilterManager to be "instantiated for use outside of the main function.
® Remove complex naming and regular expression syntax.

Instantiating our new version of MediaFilterManager :

<l-- Place all DSpace core service bean definitions below here -->
<bean cl ass="org. dspace. apps. nedi afi |l ter. NewMedi aFi | t er Manager" autow re="byType"/>

Here we will allow our new mediafiltermanager to be autowired by type
FilterMediaManager Architecture
Buisness Logic:

Problem: Filtermedia attempts to regulate multiple levels of processing of the bitstream, leading to overly complex controller logic and the removal of
flexibility from the Filter for processing the result.

Solution: Make a DelegateHandler that can be overridden by the application to create MediaFilters that do more generic tasks.
decisionmaking being remove
List of FormatFilters that can be applied to a DSpace Bitstream.

Format Filter

public interface FormatFilter

{

| *x*

* Get a filename for a newy created filtered bitstream
*

* @aram sourceNanme nanme of source bitstream

* @eturn filename generated by the filter - for exanple, docunent.pdf becomes docunent. pdf.txt
*/

public String getFilteredNane(String sourceName);

| *x*

* @eturn name of the bundle this filter will stick its generated Bitstreans

*/
public String getBundl eName();

| **

* @eturn nane of the bitstreamformat (say "HTM." or "Mcrosoft Wrd")

* returned by this filter look in the bitstreamformat registry or
* medi afilter.cfg for valid format strings.
*/

public String getFormatString();

/**

* @eturn string to describe the new y-generated Bitstreanis - how it was produced is a good idea
*/

public String getDescription();

/**
* @aram source input stream
*
* @eturn result of filter's transfornmation, witten out to a bitstream
*/
public I nputStream get Destinati onStrean(| nput Stream source)
t hrows Exception;

* Performany pre-processing of the source bitstream *before* the actual
* filtering takes place in MediaFilterManager. processBitstreant().

* <p>

* Return true if pre-processing is successful (or no pre-processing

* is necessary). Return false if bitstream should be skipped

* for any reason.

* @aram c cont ext
* @aramitemitemcontaining bitstreamto process
* (@aram source source bitstreamto be processed

* @eturn true if bitstream processing should continue,
* false if this bitstream should be skipped
*
/
public bool ean preProcessBitstrean{Context c, Itemitem Bitstream source)
t hrows Exception;

* Perform any post-processing of the generated bitstream*after* this
* filter has already been run.

* <p>

* Return true if pre-processing is successful (or no pre-processing
* is necessary). Return false if bitstream should be skipped

* for sonme reason.

* @aram c context
* @aramitem itemcontaining bitstreamto process
* @ar am gener at edBi t st ream

* the bitstream which was generated by
* this filter.
*/

public void postProcessBitstream Context c, Itemitem Bitstream generatedBitstream
t hrows Exception;

Interface to all MediaFilters to self register the formats that they supportinterface to allow filters to register the input formats they handle (useful for
exposing underlying capabilities of libraries used)

public interface SelfRegisterlnputFormats

{
public String[] getlnputM METypes();
public String[] getlnputDescriptions();
public String[] getlnputExtensions();

}

An Abstract MediaFilter class that supports od simple defaults

public abstract class MediaFilter inplenments FormatFilter

{
public bool ean preProcessBitstream Context c, Itemitem Bitstream source) throws Exception
{
return true; //default to no pre-processing
}
public void postProcessBitstream(Context c, Itemitem Bitstream generatedBitstream throws Exception
{
//default to no post-processing necessary
}
}

Business Logic

A number of configured media filters can be applied to any indvidual Bitstream within an Item to gerneate a resulting bitstream. Note the name of that
resulting bitstream's name is generated and controlled byt he FormatFilter and that

MediaFilter Configuration

An array of FormatFilters that may be applied, a list of filterFormats they apply to an a list of Communities or Collections to ignore (skipList)

private static FormatFilter[] filterC asses = null;
private static Map<String, List<String>> filterFormats = new HashMap<String, List<String>>();

private static List<String> skipList = null; //list of identifiers to skip during processing

Configuration Options

Business Logic (lterator over DSpace Object Model)
Ways we can clean up the filtering process:

For Loops:

For Loops are strong candidates for refactoring the codebase, the contents of For Loops generally can be copied to new Classes and overriden by the
application if neccessary leading to a simpler controller and greater capability to change the codebase and change-up processing.

Reviewing MediaFilterManager we can see a number of ways to easlit cleanup the codebase here. We will go through the codebase and identify the parts
that are configured via the existing dspace.cfg and we will replace those:

/1key (in dspace.cfg) which lists all enabled filters by nane
public static final String MEDI A _FILTER PLUG NS_KEY = "filter.plugins";

[lprefix (in dspace.cfg) for all filter properties
public static final String FILTER PREFIX = "filter";

//suffix (in dspace.cfg) for input formats supported by each filter
public static final String | NPUT_FORVATS_SUFFI X = "i nput For mats";

/lseparator in filterFormats Map between a filter class nanme and a plugi n nane,
//for MediaFilters which extend Sel fNanmedPl ugin (V034 is "file separator" char)
public static final String FILTER PLUG N_SEPARATOR = "\ 034";

	Refactoring MediaFilterManager for greater reuse and flexibility

