Chapter 7 - Customizing Islandora

Creating Custom Collection Objects

In certain cases, you may wish to change the nature or behaviour of Collection Objects in Islandora. By creating a custom collection object, you can
override the default behaviour of Islandora. A simplified overview of Collection Objects is provided in the introduction of this guide. For example, you can
return objects that have a different relationship to the collection object, you can present objects in your collection in a custom way to your viewer, and you
can create security policies that will restrict access to the items in your collection (overriding Fedora’s default behaviour). The following chapter provides
more information about the default behavior of Islandora, how Collection Objects can be constructed, and how they can be extended and customized.

Overview:

Collection Objects have one mandatory Datastream (COLLECTION_POLICY) and several optional Datastreams. The optional Datastreams override the
default behaviour of the Islandora Module. You may add Datastreams by navigating to the collection object you wish to modify, and then adding
Datastreams via the interface. You may also add these Datastreams using any Fedora tools that you are familiar with.

COLLECTION_POLICY*

QUERY

COLLECTION_VIEW

CHILD_SECURITY: gives a POLICY Datastream to child objects

*Mandatory
COLLECTION_POLICY

A Collection Object can have four Datastreams, although the COLLECTION_POLICY is the only mandatory stream. If you do not have a
COLLECTION_POLICY Datastream, additional objects cannot be ingested as members of that collection object. In other words, in order to add items to a
collection or sub-collection, the collection object (or “parent-type” object) must have a COLLECTION_POLICY stream. Here is an example of a
COLLECTION_POLICY Datastream (as viewed using the Islandora interface to view in a browser)

— <collection_policy name="" xsi:schemaLocation="http://www.islandora.ca http://syn.lib.umanitoba.ca
fcollection_policy.xsd">
— <content_models>
<content_model dsid="ISLANDORACM" name="Collection" namespace="islandora:collection”
pid="islandora:collectionCModel"/>
</content_models>
<relationship>isMemberOfCollection</relationship>
</collection_policy>

The COLLECTION_POLICY Datastream must have a isMemberOfCollection relationship declared, and must be affiliated with the islandora:
collectionCModel.

The relationship statement tells Islandora that this Fedora object is a collection object. Islandora can then query the resource index for objects that have a
relationship of isMemberOfCollection to this collection object.

The isMemberOfCollection is the default relationship used by Islandora, but other relationships can be used by declaring that relationship in the
COLLECTION_POLICY Datastream. If you use another relationship other than this relationship, you will have to use a QUERY Datastream as well. (In
other words, any new relationship declared in the COLLECTION_POLICY Datastream will make the QUERY Datastream mandatory.)

If you wish to create a new COLLECTION_POLICY stream, you will be writing XML. One way to do this is to start with an example collection policy (there
is one available in....) and edit it. The DSID of this datastream must be COLLECTION_POLICY.

QUERY

A QUERY Datastream is an ITQL query that overrides the Islandora’s default ITQL query. If you have declared different relationships (not a hasModel
relationship) in your COLLECTION_POLICY Datastream, you will have to write a custom QUERY stream to return these relationships. In order to do this,
you will have to have an understanding of ITQL. Resources for learning ITQL are offered in the Bibliography for this guide. Your ITQL query must return
SPARQL XML to be parsed by the default collection view xslt file, or by a custom COLLECTION_VIEW xslt that you have written yourself.

When you write a QUERY Datastream, you ask ask the Islandora module to retrieve items that have a different set of objects related to your collection
object from those in the default ITQL query. The default ITQL query is located in the islandora module in the collection_class.inc file. This is the query:

$query_string = 'select $object $title $content from <#ri> where ($object <dc:title> $title and $object <fedora-
nodel : hasMbdel >
$content and ($obj ect <fedora-rels-ext:isMenberOf Col |l ection> <info:fedora/' . $pid . '>

or $object <fedora-rels-ext:isMenberOf> <info:fedora/' . $pid . '>)and $object <fedora-nodel:state>
<i nf o: fedor a/ f edor a- syst em def / nodel #Acti ve>) mi nus $content <mul gara:i s> <info:fedoral/fedora-system
Fedor athj ect- 3. 0>order by $title';

Note that if you write a QUERY Datastream, you may also have to write a COLLECTION_VIEW Datastream to parse and display your results. Sample
QUERY Datastreams are provided in the Resources section of this guide.

COLLECTION_VIEW

A COLLECTION_VIEW Datastream contains an XSLT that will define how objects in a collection are displayed. You may wish to write a custom
COLLECTION_VIEW stream to change the look and feel of your collection for visitors. For a custom XLSTs used for a COLLECTION_VIEW Datastream,
please refer to the resources section. The XSLT in your COLLECTION_VIEW Datastream has to be matched to either the default ITQL query used by
Islandora (and found in the Islandora module under spargl_2_html.xsl) or the custom QUERY Datastream that you have written. Your XSLT will parse the
SPARQL XML returned by either the default query, or the query you have written. This is the default xslt, called from the islandora module at object_helper.
inc.

CHILD_SECURITY

The optional CHILD_SECURITY Datastream is a hand-written eXtensible Access Control Markup Language (XACML) policy that provides security at the
collection level. To learn more about XACML, visit our resources section. The CHILD_SECURITY Datastream interacts with the default set-up of your
Fedora repository. In order to use the CHILD_SECURITY stream effectively, you may wish to review the Islandora and Security section of this guide.

The CHILD_SECURITY Datastream overrides whatever default security you have configured as part of your Fedora and Drupal installations (see the
Fedora installation section of this document, particularly information about global XACML policies). For example, if objects in your Fedora repository are,
by default, available to the public, you may wish to write a CHILD_SECURITY stream for a collection to restrict access to that collection to specific users,
or specific Drupal Roles.

All of the objects that are ingested as members of a collection object that has a CHILD_SECURITY stream will have a POLICY stream. Without the
POLICY Datastream, the objects default to your base security configuration. This means that if you add a CHILD_SECURITY stream to an object after
items are already affiliated with the collection, these objects will not adopt the CHILD_SECURITY policies (and they will have no POLICY Datastreams).

Note that Islandora does not change the Ul in the case where a POLICY Datastream exists. This means that the icons for managing objects (such as the
purge option) will still be available to users. However, if users attempt to perform the action and they do not have permissions corresponding to that action,
they will receive an error. We are hoping that future versions of Islandora will not have this limitation.

Writing XACML that Islandora can use

If you want people who do not have the administrative role in Drupal to be able to ingest objects, you will have to add a XACML policy file to the
$FEDORA_HOME/data/ fedora-xacml-policies/repository-policies. You can retrieve an example XACML policy file from the Resources section of the guide.
However, this example opens API-M to all of the users in your Drupal instance that are authenticated users.

When you write a CHILD_SECURITY stream you are writing a XACML policy. That XACML policy must be parseable (usable) by Islandora’s simple
parser. Islandora’s simple parser expects the CHILD_SECURITY Datastream to contain a XACML policy that denies access to all users, and then provides
exceptions for users with certain Drupal Roles, or User IDs. If users have IDs or roles that are permitted access in the XACML policy, they will be allowed
to ingest, view, or modify elements in that collection. You can visit an annotated sample XACML policy in the Resources section of this document. This
document can act as a starting point for a collection-object CHILD_SECURITY Datastream.

In order for Islandora to be able to browse collections, your collection object must also have a hasModel entry in the RELS-EXT Datastream that points to
islamdora:collectionCModel. This lets the module know that the object represents a collection and it will then query for objects that are members of this
collection.

Creating Custom Islandora Content Models

Islandora makes available a number of Content Model Objects in Islandora Solution Packs. However, you may wish to modify these Content Models, or
create your own in order to address particular types of content, or to create custom transformations of your data on ingest. Most of the time, you will
customize or write a content model to modify behaviour when users view content, or to mofiy what happens to an object when it is ingested into the
repository. Islandora Content Models extend Fedora’s Content Model Architecture (CMA), by adding an ISLANDORACM stream.

When you write a Custom Islandora Content Model Object, you are writing an ISLANDORACM stream that calls PHP code that you have written and
placed in the plugins directory within the Islandora module. Then, from the ISLANDORACM stream, you call the code to be executed when a user ingests
a new object into a collection. This is possible because, in the Islandora module, there are methods that will parse the XML of your ISLANDORACM
stream looking for the following elements:

® The <display_in_fieldset> element determines how objects are displayed when a user accesses the object view.
® The <ingest_rules> element defines how objects identified by specific DSID's are managed. For instance, a PDF content model may tell the
module to create a thumbnail and ingest that thumbnail as an additional Datastream along with the actual PDF Datastream.

For example:

<di splay_in_fiel dset>

<dat astream i d="0BJ" >

<met hod>

<file>plugins/qt_viewer.inc</file>

<cl ass_nanme>ShowQ St r eans! nFi el dSet s</ cl ass_nane>
<met hod_nanme>showQ </ met hod_nane>

</ met hod>

</ dat ast r ean»

<dat astream i d="QDC' >

<met hod>

<fil e>pl ugi ns/ Showst r eans! nFi el dSets.inc</file>
<cl ass_name>Showst r eans| nFi el dSet s</ cl ass_nane>
<met hod_nanme>showQdc</ net hod_nane>

</ met hod>

</ dat ast r ean>

</display_in_fieldset>

Remember: Once you have created a new Islandora Content Model, the COLLECTION_POLICY Datastream of a Collection Object must be modified to
referénce your new Content Model Object.

Customizing GSearch/Solr

The out-of-the box functions will allow you to support all of our current solution packs, and the MODS and DC metadata streams associated with them.
Once you have GSearch installed and running there is very little you need to do. However, you may wish to customize Solr to index a new metadata
schema (if you are creating a custom content model) or if you want to modify existing fields. To do this, you would modify the foxmIToSolr.xslt located in
the GSearch webapps directory. If you followed the instructions for installing GSearch in Chapter 9 - Enabling Indexing & Searching with Solr, the file
would be located here:

/usr/1ocal/fedoraltontat/webapps/fedoragsearch/ EB- | NF/ cl asses/ confi g/ i ndex/ gsearch_solr

For example, to add the Darwin Core to the index you can add the following lines to the xslt:

<xsl :for-each select="foxml :datastream foxn : datastreanVersion\[last()\]/foxnl:xnm Content/dwc:
Si npl eDar wi nRecor dSet / dwe: Si npl eDar wi nRecor d/ *" >
<xsl:if test="text() \[normalize-space(.) \]"><\!\--don't bother with enpty space-\->

<field >
<xsl:attribute nane="nanme">
<xsl : val ue-of select="concat('dwc.', substring-after(nane(),"':"))"/>

</ xsl:attribute>
<xsl :val ue-of select="normalize-space(text())"/>
</field>

</xsl:if>
</ xsl : for-each>

The xsl above will index most Darwin Core fields. Once GSearch is aware of the new schema, you can make Solr aware of it by modifying the schema.
xml. Quite often, it makes sense to assign the same content to two fields:

® one analyzed (tokenized, lower cased etc.) for searching
® one unanalyzed (stored exactly as is) for displaying in facets, etc.

The xsl above will create many fields one of which would be dwc.language. In the Solr Schema we would add a declaration for this field:

<field name="dwc. | anguage" type="text" indexed="true" stored="true" nultiVal ued="true"/>

Here, we have given it a type = “text”, which in the default schema is analyzed.

https://wiki.lyrasis.org/pages/viewpage.action?pageId=30221205

<fiel dType name="text" class="solr. TextFi el d" positionlncrenmentGap="100"><anal yzer type="i ndex"><t okeni zer
cl ass="sol r. Whi t espaceTokeni zer Factory"/><!-- in this exanple, we will only use synonyns at query tinme

<filter class="solr.SynonynFilterFactory" synonyns="i ndex_synonyns.txt" ignoreCase="true" expand="fal se"
/>

--><filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"/><filter class="solr.
WordDel im terFilterFactory" generateWrdParts="1" generateNunberParts="1" catenateWrds="1" catenat eNunbers="1"
catenateAl | ="0"/><filter class="solr.LowerCaseFilterFactory"/><filter class="solr.EnglishPorterFilterFactory"
protected="protwords.txt"/><filter class="solr.RenoveDuplicatesTokenFilterFactory"/></anal yzer><anal yzer type="
query"><t okeni zer class="sol r. Wi tespaceTokeni zerFactory"/><filter class="solr.SynonynFilterFactory" synonyns="
synonyns. txt" ignoreCase="true" expand="true"/><filter class="solr.StopFilterFactory" ignoreCase="true" words="
stopwords. txt"/><filter class="solr.WrdDelinmterFilterFactory" generateWrdParts="1" generat eNunberParts="1"
cat enat eWor ds="0" cat enat eNunbers="0" catenateAl | ="0"/><filter class="solr.LowerCaseFilterFactory"/><filter
class="sol r. EnglishPorterFilterFactory" protected="protwords.txt"/><filter class="solr.
RenoveDupl i cat esTokenFi | ter Fact ory"/ ></anal yzer></fi el dType>>

The types are also defined in the schema.xml. If we want to use this in a filter, it makes sense to also store it unanalyzed under a different name. This
requires two more entries in the schema.xml:

<field name="| anguage" type="string" maxChars="300" indexed="true" stored="true" multiValued="true"/>
<copyFi el d source="dwc. | anguage" dest="I|anguage"/>

Once we have created a field named language to store the unanalyzed data in, we’'ll use copyField to copy the dwc.language field into the language field
which will happen during indexing before it is analyzed. Notice the type is now defined as a string. We can now use these fields in solr request
handlers. Request handlers determine what fields to search and what to return, and you can assign certain fields more weight than others.

A request handler may look like this:

<request Handl er nane="herbariunt class="sol r. SearchHandl er" defaul t="true">
<\!-\- default values for query parameters -->

<l st nane="defaul ts">

<str nane="echoParans">explicit</str>

<str nane="qf">dwc.type”2.0 dwc. | anguage”2.0 dwc. ri ght sHol der”2. 0 dwc. accessRi ghts”?2.0 dwc. ri ghts”2.0 dwc.

basi sOf Record”2. 0 dwc. scientificNane”2.0 dwc. ver nacul ar Nane”2. 0 dwe. ki ngdon*2. 0 dwc. phyl unt2. 0 dwe. cl ass”2.0
dwc. order”2. 0 dwe. fam | y*2. 0 dwc. genus”™2. Odwc. speci fi cEpi thet”2.0 dwc. continent”2.0 dwc. country”2.0 dwe.
countryCode”2. 0 dwc. st ateProvince”2. 0 dwc. county”2.0 dwc. nuni ci pal ity?2.0 dwc. verbatinLocal ity*2.0 dwc.

deci nal Latitude”2.0 dwc. deci nal Longi tude”2. 0 dwc. occurrencel D*2. 0 dwe. i nstitutionCode”2.0 dwc. coll ecti onCode”2.
0 dwc. cat al ogNunber”2. 0 dwc. recordedBy”2. 0 dwc. event Date”2. 0 PI DMO. 5</str>

<str nanme="fl">rightsHol der, accessRi ghts, rights, basi sOf Record, scientificNane, vernacul ar Nane, ki ngdom
phylum class, order, famly, genus, specificEpithet, continent, country, countryCode, stateProvince, county,
muni ci pality, verbatinlocality, decinalLatitude, decinal Longitude, occurrencelD, institutionCode,

col | ecti onCode, catal ogNurber, recordedByeventDate, PID</str>

<str nane="g.alt">*:*</str>
</lst>

<l st nanme="appends" >
<str nanme="fq">PI D: herbariunt</str>
</lst>

</ request Handl er >

Some interesting things to take note of:
The request handler example shown above limits the results to objects that have the herbarium namespace.
In the gf , we are searching fields like dwc.type and dwc.language and they are all weighted the same. We can tweak the weights later if we wish to

customize the results. Solr returns are the fields in <str name="fI"> element. This gives us nice values to use when displaying the results and when listing
facets.

Creating Custom Forms using the Islandora Form Builder

The following section presumes that you are using the Virtual Machine Image or are visiting http://sandbox.islandora.ca OR that you have installed and
configured the XML Forms module. For an overview of how Islandora handles descriptive metadata, read Chapter 14 - Descriptive Metadata and Islandora.
This section will discuss how to create a new form using the Islandora Form Builder

Introduction

The XML Forms Builder allows you to create and manipulate xml form templates and affiliate them with content models. This means you can create
custom forms for users to ingest items into collection by affiliating the content model with a form. You may want to create a custom metadata form to
address the needs of your particular collection, or to pre-populate repeating fields. For example, if a collection of PDFs was all written by the same author,
you may wish to create a custom form for this collection that has the author’s name pre-populated, so that users ingesting into this collection will not need
to re-enter this information. Using custom forms you can also specify which metadata elements you wish to use to describe your object, and create
validation rules for particular fields, among other features.

® If you are a developer, or somebody looking to install the XML form builder, you will want to review Chapter 10: Enabling Form Creation with the
XML Forms Modules, which discusses the installation and configuration of the module.

® [f you are a user, then the following documentation assumes that you have some understanding of metadata schemas and XML, as well as
Islandora specific concepts such as Content Models, and Collection Objects. The greater grounding you have in *XPath, XML Form Templates,
and XML Schemas* (.xsds), the greater use you will be able to make of the form builder.

® Solution Packs are designed to come pre-packaged with suitable forms written in MODS. These forms can be copied, and edited or modified to
suit your needs.

® Forms can be created based on any schema.

Before You Begin

Required Modules
Ensure that you have downloaded and enabled the following Drupal modules which are available from the Islandora.ca Download page:

islandora_content_model_forms
islandora_xml_forms

php_lib

objective_forms

tabs

When developing an XML form in the XML Form Builder you'll need to reference the schema of the metadata format you are working with. Throughout this
document we'll be using the OAI DC metadata schema as an example. The OAI DC XML format is the serialization of Simple Dublin Core metadata
descriptions and we'll be using Dublin Core elements in this example . You can view/retrieve the schema from here

Sample XML Record

It is incredibly helpful to have an example record on hand while developing the form. Ensure that it matches the version of the XML schema you are
working with.

Sample OAI DC Record from a Fedora Repository

http://sandbox.islandora.ca
https://wiki.lyrasis.org/display/ISLANDORA112/Chapter+14+-+Descriptive+Metadata+and+Islandora
http://islandora.ca/download
http://islandora.ca/sites/islandora.ca/files/islandora_content_model_forms-11.2.0.tar__1.gz
http://islandora.ca/sites/islandora.ca/files/islandora_xml_forms-11.2.0.tar__0.gz
http://islandora.ca/sites/islandora.ca/files/php_lib-11.2.0.tar__0.gz
http://islandora.ca/sites/islandora.ca/files/objective_forms-11.2.0.tar__0.gz
http://islandora.ca/sites/islandora.ca/files/tabs-11.2.0.tar__0.gz
http://www.openarchives.org/OAI/2.0/oai_dc.xsd

<oai _dc:dc xm ns:oai _dc="http://ww. openarchi ves. org/ QAl/ 2.0/ oai _dc/" xm ns:dc="http://purl.org/dc/elements/1.1
/o

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xsi:schemalLocati on="http://ww. openarchives.org/ QA /2.0

[oai _dc/

[http://ww. openar chi ves. org/ QAl/ 2. 0/ oai _dc. xsd] ">

<dc:title>Pioneer days & shanty ways</dc:title>

<dc: creat or >El dershaw, Edith V.</dc:creator>

<dc: subj ect >Hi st ory</dc: subj ect >

<dc: subj ect>Social |ife and custons</dc: subject >

<dc: description>Edith V. Eldershaw. </dc:description>

<dc: description>Printed by Wllians & Crue Ltd.; Summerside, P.E.|.</dc:description>
<dc: descripti on>Contai ns "stories", poens, and phot ographs, </ dc: descri pti on>

<dc: publ i sher >El der shaw</ dc: publ i sher >

\\

<dc: type>col | ecti on</dc:type>

<dc: t ype>i ngest ed</ dc: type>

<dc: f or mat >el ect roni c</ dc: f or nat >
<dc:identifier>ilives: 257167</dc:identifier>

<dc: | anguage>eng</ dc: | anguage>

<dc: coverage>Prince County (P.E.l.)</dc:coverage>
\\

<dc: coverage>Tigni sh (P.E. |.)</dc: coverage>
<dc: coverage>Pri nce Edward | sl and</dc: cover age>

</ oai _dc: dc>

XML Editors

When developing a form it can be useful to have an XML editor to test code in. Typically these editors can help you determine the xpath of an element,
whether the output you are producing is valid, etc. XML Editors would include Oxygen (commerical), XPontus (opensource), and there are many others.

XML Form Builder

XML Form Builder is a Drupal module that integrates the creation of XML based forms into Islandora. Once a form has be built, it is associated with a
content model. This tutorial will take you through the process of creating a form, associating it with a content model, and implementing it with a collection.
Once created you will be able to create and edit your metadata.

To use the XML Form Builder navigate to the module in your Islandora site:

Administer > Content Management > XML Form Builder

http://www.oxygenxml.com/
http://xpontus.sourceforge.net/

Administer

By task By module

Welcome to the administration section. Here you may control h

Show descriptions

Content management

Manage your site's content.

e Comments

o Content

e Content types

o Form Associations

o Islandora Content Modeler
e Post settings

o RS5S publishing

e Taxonomy

e XML Form Builder

L llspr mananesment

Form Builder Interface

When you start the module you are presented with an option to select a form from a list (those are the forms that come bundled with your Islandora install)
and a series of buttons.

Home » Administer » Content management » XML Form Builder

XML Form Builder

Forms

Select a Form:

' oai_dc o]
Create Copy Edit View Export Delete
® Create
© Select Create to begin the process of creating a metadata form from scratch or from an existing form definition file (an XML Form Builder
form).
* Copy

O Copies an existing form (from the dropdown), that you can then modify. This is probably be one of the most common methods you will
use to create new forms.
® Edit

o Edits an existing form.
®* View

© View an existing form. This option is useful when testing input. You can submit a form and see its XML output.
® Export

O Exports an existing form and allows you to save the form XML to your local computer.

Creating a Form
To start creating a form select Create.
In the Create Form dialogue enter a form name - for example we are creating a basic OAI DC form so a name like oai_dc_basic would be appropriate. If

you have an existing XML Form Builder form you could upload the form definition. We’'ll be creating this OAl DC XML form from scratch, so we can click on
Create.

Home » Administer » Content management » XML Form Builder » Create Form

Create Form

Form Mame: *

oai_dc_basig|

Form Definition:
{ Browse... |

An optional XML form definition template.

Create Cancel

The module should report that it successfully created a new form called oai_dc_basic.

Home > Administer » Content management > XML Form Builder > Edit Form

Edit Form

Successfully created form: oai_dc_basic.
Form Editor
Form Properties
Elements

Save & Preview Save
Add Copy Paste Delete

] Form (form)

PEI E;BLI,}E E‘ﬂﬂ, Islandora Virtual Environment
U ISLAND

Digital Repository ~ Create content = Administer

Home » Administer > Content management » XML Form Builder » Preview Form

Preview Form

This is the main form building/editing interface for creating XML forms and it provides methods for adding form properties, form fields and a preview pane.
Setting Form Properties

Form Properties
Elements

Add Copy Paste Delete

) Farm (form)

Form Editor ' Clicking on Form Properties will
 bring up the Properties Form pane.

Properties Form

Save & Preview Save

Root Element

Root Element changeme
Name:

Namespace URI:

Schema

Name:

& Add Delete

Prefix URI

When creating an XML form the first thing you need to set in the Form Editor is the Form Properties. This is where having an example of an OAI DC record

would come in handy and would provide the information you need to fill in the Form Properties. Here is the part of the record that you'll use:

/o

<oai _dc:dc xm ns:oai _dc="http://ww. openarchi ves. org/ QAl/ 2.0/ oai _dc/" xm ns:dc="http://purl.org/dc/elements/1.1

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xsi:schemaLocati on="http://ww. openarchi ves.org/ QAl/2.0

/ oai _dc/

http://ww. openar chi ves. org/ QAl/ 2. 0/ oai _dc. xsd" >

It provides information about the Root Element Name, the Namespace URI, the location of the Schema, as well as the various nhamespaces needed.

Name:

Schema

Name:

&) Add
Prefix

oai_dc
%S0

dc

Save & Preview Save

Properties Form

Root Element

Root Element oai_dc:dc

Namespace URI: http://www.openarchives.org /OAlf2.0/oai_dc/

http://www.openarchives.org/OAlf2.0/0ai_dc.xsd

|| Namespaces

Delete
URI

http:/ fwww.openarchives.org /OAl/2.0/oai_dc/
http:/ fwww.w3.org/2001/XMLSchema-instance
http:/ fpurl.org/dc/elements/ 1.1/

Select Save once you have the properties entered. Once the form properties have been entered you are ready to add elements to your form.

Adding form fields

Some schema require elements appear in a certain order (an order based schema), that certain elements be required or not, that some elements are
repeatable and others not, or that elements can be nested. Refer to your schema documentation and to the guidance in creation of records based on the
schema. For the schema we are using in this tutorial, Simple Dublin Core, each of the fifteen elements is optional and may be repeated. We will create a
simple form for this exercise that utilizes several Dublin Core elements. Let's create a table listing the elements, the element labels, the type of element,
the content of the element, and whether they are repeatable. We'll use this information when adding elements to our form.

Element Label
title Title
creator Creator(s)

descriptio | Descriptio

n n
type Type
date Date

subject Subject(s)

rights Rights

Type Content Repeatable
textfield The title of the work. no

tags/tag The creator(s) of the work. yes
textarea A description of the work. no

select A controlled list of terms no
datepicke | The date the work was issued or published. no

r

tags/tag The topic of the work. yes
textarea Information about rights held in and over the no

resource.

Adding a textfield type form field - the dc:title element

We can start adding elements to the form starting with the title element. We can use the information in our table to fill out the first part of Element Form.

In this part of the form you can enter values for Identifier, Type, Title, Description, Default Value, and Required. These can be defined as follows:

Identifier: Identifies this form field. It ishe Drupal form array key for this element.

Type: Used to determine the type of form field.

used as Title: The label of the form field as it appears on your form.

Description: The description of the form field.

Default Value: The value of the form field that will be displayed or selected initially if the form has not been submitted yet.

http://dublincore.org/documents/dcmi-type-vocabulary/

Required: Indicates whether or not the element is required. This automatically validates for empty fields, and flags inputs as required. Fields with a type of
file are not allowed to be required.

Form Properties Save & Preview Save
Elements Element Form
Add Copy Paste Delete |
sy ey Identifier: tie ®——— The name of the element.
1 title (textfield) Commen Form Controls | Advanced Form Controls
The type of element.
Type: textfield v “-""’—" m
Tite: Title &——— The label for the element that .
stion: This Is the title. . will appear on the form.

You can specify a default \ The description of the element

Value if desired. that appears below the entry box
for the element on the form.

Default Value:
Required: v

Make the field required
if desired. In this case we want every
metadata record created to have a title.

The rest of the form deals with where each element is created, read, updated, and deleted in the XML tree. This is where it would be useful to understand
how XML works and to have a basic understanding of XPATH.

Reviewing our OAI DC XML sample record we can determine the location/context of the title element.

<oai _dc: dc xm ns:oai _dc="http://ww. openarchi ves.org/ QAl/2.0/o0ai _dc/" xm ns:dc="http://purl.org/dc/elenents/1.1
/o

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance" xsi :schemaLocati on="http://ww. openarchi ves.org/ QAl /2.0

[oai _dc/

[http://ww. openarchives. org/ QAl /2. 0/ oai _dc. xsd] ">

<dc:title>Pioneer days & shanty ways</dc:title>

The full XPATH in this XML document for the dc:title element would be:

/oai _dc:dc/dc:title

where /oai_dc:dc is the parent element and dc:title is the child element. The Create dialogue is where we enter the information needed for creating an
element in our form. We'll be entering information into the Path Context, Path, Type, and Value properties in our example. If you had an order based
schema, you would also fill in the Schema field. Here are some definitions for each of those properties:

Path Context: the context in which the path with be executed in.

document - xpath query is run from the root element of the document

parent - xpath query is run from the node created/read by its parent’s form field

self - only applies Delete and Update actions and applies to the node selected by the Read action.

Path: An XPATH to this element’s parent object. This is used to determine whether this element is inserted.

Schema: An XPATH to the definition of this element's parent. The xpath is executed in the schema defined in this form's properties. This is used to
determine the insert order for this element.

Type: The type of node that will be created. If XML is specified, an XML snipped is expected in the value field.

Value: If the type is either Element or Attribute, the name of the element or attribute is expected. If the type is XML, an XML snippet is expected where the
value of the form field will be inserted where ever the string %value% is used in the XML snippet.

Review the image below and think about how your other OAI DC elements will be created based on this pattern.

® *Create action is about selecting the parent node where the new node will be created.*

+ | Create

Path:
Schema:

Type:

Value:

Checking the Create box opens

up the Create dialog.

Path Context:

document 25
foai_dc:de -—
element N7 '\
dc:title

o |

The path context is either parent or document.
For the OAI DC form we will be using document
as the path context.

This is the path where the element will be
create ... the parent of the element you are
creating.

This can be element, attribute, or XML. In this
case we are creating an element. Alternately
we could also create the element using XML,
but a type of element makes sense here.

Since we are creating an element, we enter the value of the
element - dc:title. If we were creating the value using XML we
could enter

<dc:title>%value%</dc:title>

The rest of the form deals with where the element will be read, updated, and/or deleted from.

® *Read action is about selecting the node that will be used to populate the form field.*
® *Update action is about updating the node that was used to populated the form field.*
® *Delete action is about deleting the node that the Read action selected.*

Note: you can Update or Delete nodes other than the node which is Read. (for example with mods:name ... where sub-elements are created with a form
field and additional nodes are automatically created with XML code. We may want to delete/update the entire mods:name and its sub-elements.)

|+| Read
Path Context:
Path:

|| Update
Path Context:

Path:

Schema:

|| Delete

Path Context:
Path:

The path context is either parent or document.

/ For the OAI DC form we will be using document

document v

as the Read path context.

foai_dcde/dctitle g This is the full path where the element will be

self o

self::node()

self hd

self::node() <

read from.

«— For Update the path context options are

parent, document, or self. In this case the path
context for updating the element will be self.

self::node() is the nodeset containing only the
context node.

We will use the same values for Delete as we

did for Update.

Adding the creator element - an element that may have multiple values

In some cases you will have multiple occurrences of an element, for example a digital object may have more than one creator (multiple authors) or may
have many subjects that describe it. The Form Builder has several methods dealing with this use case. In our example OAI DC form we have decided that
there could be multiple creators and the schema allows that. It is a two step process:

1. create an element with a type of tags,
2. nest another element in the tags type element that has a type of tag.

This image displays the first step of the creation of the creator element.

Form Properties
Elements Element Form
The name of the element.
Add Copy Paste Delete /
453 Root (form) Identifier: creator

Select a type of tags. This

— title (textfield) Common Form Controls | Advanced Form Control{ element will hold a sub-

—| - creator (tags)

0 ag) Type: T . & element with a type of tag.
] Submit (submit) -
' e LRaatons) The label for the element
Description: The creator(s) of the work. that will appear on the
form.
The description of the
Default Value: element that appears below
Required: F the entry box for the element
- on the form.
|| Create
[Read None of these are required
- . as we will set them in the
] Update tag ‘child’ element.
[| Delete

The second step is to create a nested tag type element. The image below displays the values for the properties used for this element.

For these type of elements, the practice is
to use 0 as the identifier.

< Select the tag type of element.

. & The same pattern is used for

Create as was used in the
dc:title example.

| Read, Update, and Delete
| are set up in the same

- manner as the previous

Element Form
Identifier: 1] —
Common Form Controls || Advanced Form Conftrols MoTE
Type: tag o
Title:
Description:
Default Value:
Required:]
| Create
Path Context: document
Path: foai_dc:dc
Schema:
Type: element
Value: de:creator
|+/| Read
Path Context: document
Path: foai_dc.dc/dcicreator

| dc:title example.

Adding a textarea type form field - the dc:description element

For element that require a description or that contain a large amount of text, the textarea type form field is used.

Identifier: description «—— Enter an identifier.
Common Form Controls Advanced Form Controls 4l
Type: textarea x Select the textarea
Title: Description type of element.
Description: The description of the work.
Default Value:
Required:
| Create
Path Context: - e - The same pattern is used for
_— Toal dede Creaalute as was used in the
- dc:title example.
Type: element w
Value: dc:description
! Raad Read, Update, and Delete
are set up in the same
PRI S - manner as the previous
Path: Joai_dc:dc/dc:description dC:tiﬂE exarnple.

Adding a select type form field - the dc:type element

In many cases you will want to provide the user with a list of controlled terms and the select form field type is used. For the type element our controlled list
of terms is based on the DCMI Type Vocabulary. The Vocabulary “provides a general, cross-domain list of approved terms that may be used as values for
the Resource Type element to identify the genre of a resource”.#

DCMI Type Vocabulary

Term Description
Collection An aggregation of resources.
Dataset Data encoded in a defined structure. Examples include lists, tables, and databases. A dataset may be useful for direct machine processing.

Event A non-persistent, time-based occurrence. Examples include an exhibition, webcast, conference, workshop, open day, performance, battle, trial, wedding,
tea party, conflagration.

Image A visual representation other than text. Examples include images and photographs of physical objects, paintings, prints, drawings, other images and
graphics, animations and moving pictures, film, diagrams, maps, musical notation.

InteractiveR
esource

Movinglmag
e

PhysicalObj
ect

Service

Software
Sound

Stilllmage

Text

Source

A resource requiring interaction from the user to be understood, executed, or experienced. Examples include forms on Web pages, applets, multimedia
learning objects, chat services, or virtual reality environments.

A series of visual representations imparting an impression of motion when shown in succession. Examples include animations, movies, television
programs, videos, zoetropes, or visual output from a simulation.

An inanimate, three-dimensional object or substance. Note that digital representations of, or surrogates for, these objects should use Image, Text or one of
the other types.

A system that provides one or more functions. Examples include a photocopying service, a banking service, an authentication service, interlibrary loans, a
Z39.50 or Web server.

A computer program in source or compiled form.
A resource primarily intended to be heard. Examples include a music playback file format, an audio compact disc, and recorded speech or sounds.

A static visual representation. Examples include paintings, drawings, graphic designs, plans and maps. Recommended best practice is to assign the type
Text to images of textual materials.

A resource consisting primarily of words for reading. Examples include books, letters, dissertations, poems, newspapers, articles, archives of mailing lists.
Note that facsimiles or images of texts are still of the genre Text.

When adding a select form field in the Form Builder there are two steps:

1. Add the information about the element you are creating
2. Add the terms that will display in the select list for users

1. When adding information about the element we will use the same method that we have used previously.

http://dublincore.org/documents/dcmi-type-vocabulary/

Element Form

Identifier: type € Enter an identifier.
Common Form Controls Advanced Form Controls More Advanced Controls —
Type: select e
Title: Type
Description: Select the type of element. Select the select type
of form element.
Default Value: Text
Required: |
[¥] Create
Path Context: document b |
gt oal dede The same pattern |5.used for
e ' Create as was used in the
Bma: .
| dc:title example.
Type: element b
Value: deitype
Once all the necessary properties have been
filled out, Save your changes and then select
the More Advanced Controls to add the

terms that will appear in your select
dropdown menu.

2. To add terms to your select form field you need to click on the More Advanced Controls tab in the Element Form pane. Review the image
below and enter your terms in the Options panel.

Flement Form More Advanced Controls tab is selected.

Identifier: type ¢

Common Form Controls Advanced Form Controls More Advanced Controls

[| Attributes

L4

|| Element Validate

&

Select Add to Select this icon to open the Options panel. This
add a term. is where you will add your vocabulary terms.

] After Build Select Delete to ‘\
/ delete a term.

L

Options

¥

) Add @ Delete

Value Label |
Text Text Add Values and Labels ... 0
ar—— L ' you can tab between them .
sound sound ' or double click. Once you 2
plisenteie have added all of your -
| Submit terms remember to Save. ;
] validate ¥

Adding a datepicker type form field - the dc:date element

For this example we are using the datepicker type of form field. You will want to review your existing metadata as another type of form field may be more
appropriate.

Element Form
Identifier: date «——— Enter an identifier.
Commeon Form Controls Advanced Form Controls_|| More Advanced |
Type: - . #— Select the datepicker
g Date type of element.
Description: Date the item was created, issued, or published.
Default Value:
Required:
| Create
Path Context: document o The same pattern is used for
Path: Joai_de:de Create as was used in the
e dc:title example.
Type: element b
Value: dcdate
7| Read | Read, Update, and Delete
Path Contad: e = are set up in the same
Path: Joai_dcdc/dc:date manner as the previous
dc:title example.

The remaining two elements for our sample OAI DC XML form, dc:subject (tags, tag) and dc:rights (textarea), can be built in the same manner as fields of
a similar type that we have already created.

Adding a file upload type form field - pdf file uploader

One additional element that can be added for convenience is a file upload type form field. This will allow you to browse for a PDF document on your local
machine as part of the Islandora ingest process. The image below illustrates what properties need to be filled in. Note: the Indentifier for this form field type
must be ingest-file-location.

When creating a file
upload form field, the
identifier must be

ingest-file-location.

Element Form

Identifier: ingest-file-location —

Common Form Controls Advanced Form Controls

Type: file . «—— Select the file type of
. element.
Description: Browse for your PDF.
Default Value:
Required:
[T Create

This isn’t a element that will
appear in our XVIL, so we

[Update don’t need any of these
actions.

[] Read

[Delete

Edit Form

Form Editor
Form Properties Save B Preview Save
Elements Preview
Add Copy Paste Delete
=) Root (form) UNIVERSITY I
| ingest-file-location (file) l P I I o Prince Ladward 1slandora Virtual Environment |
J title (rextfield) Sl AN |
=3 creator (tags) IbLAI\ D |
1 0 (rag) |
3 description (textarea) Digital Repository Create content Administer |
|
— type (select) Home » Administer » Content management » XML Form Builder » Preview Form |
) date (datepicker) !
=3 subject (tags) Preview Form l
— 0 (tag) !
— rights (textarea) _Browse... :
) Submit (submit) Browse for your POF |
y) Tite: * :
|
This is the title |
|
We've created all of il o |
the form ﬁEIds that The creatons) of the work. :
were included in this Description: |
example. |
|
* 7 P
Here's the preview
version of theform |
with our fields

displayed.

Form Associations Module

Connecting the Form to a Content Model

Once you've completed and tested the form you've created in the XML Form Builder module, you can connect that form to an existing content model using
the Form Associations module. You can navigate to the module using this path:

Administer > Content management > Form Associations

Digital Repository Create content Administer

Home » Administer » Content management

Islandora Solr Advanced Content management
Search
e Comments

We can connect the o Content

forms we’ve created in ir'r"""“‘“""“F_ N '[I
" @ FOrm Associations
the XML Form Builder

e [slandora Content Modeler

with Content Models o Post settings
usi ng the Form o RSS publishing
Associations module. e Taxonomy

e XML Form Builder

In this example we will associate the form we created - oai_dc_basic - with the islandora:sp_strict_pdf content model. Review the image below to fill out
the Form Associations dialog.

Form Associations Dialog

Form Associations

Content Model Datastream ID Title Field Form Transform Has Template Remowv

Add Association

Enter the PID of the Content Model
< you are associating your form with.

Content Model: *
islandora:sp_strict_pdf

The content model to associate with a form.

If the content model has no decendants it will not show up in a

Select the Datastream ID that the
Metadata Datastream ID: * | form will create on ingest. In our

L .
DESCMD | example we are creating a DC
The datastream ID of where the objects metadata is stored. metadata datastream.

Form Name:

“oaidc basic 3] € Select the form you created with

the XML Form Builder.

The name of the form to associate with the content model.

Titl_e Field: * Select the form field that holds the
[title’] e € title information.

The form field that you want to use for the objects label.

Select the file that transforms your
metadata schema to DC. Since our
form creates DC, we can select the

dc_no_transform.xsl file.

XSL Transform:
[dc_no_transform.xs| 4 k

A x5l transform for setting the Fedora Object's Dublin Core me

Upload Template Document:

| Browse...
A sample metadata file used to prepopulate the form on ingest.
T ——— Click on Add Association.

Navigating to a Collection

Once the association has been successfully created, you can try ingesting new objects into a collection that has the islandora:sp_strict_pdf content model
associated with it. In this case, the Islandora demo VM has a PDF collection associated with the islandora:sp_strict_pdf content model. Navigate to the
PDF collection using the image as a guide.

Digital Repository

Home > Digital reposi

Islandora Solr Advanced
Search

Create content

Title

andI:]

Title

L]

aru:lli]

Title

cearch

Administer

igital Repository

Select Digital Repository, then the

Basic PDFs collection.

View A

£

‘landora

Basic PDFs

T |
i

s |

|| = _——

Mewspapers Collection

Object Details

Specimens

Once in the collection (you can tell where you are by the breadcrumb), select the Add tab to add a new PDF to the collection.

Adding a PDF to the Collection

Digital Repository Create content Administer

Home » Digital repository » Basic PDFs » Digital Repository

Digital Repository

View Add _— TSeIecj: Add to ingest .a new
item into the collection.

lismsem i (= o s

2d
"Iandorﬂ

i
L e

L1} ’ i [LIE 10

Islandora Manual
Evergreen Documentation

I

Objects already in the Basic PDFs
collection.

You will be presented with a dialog requesting two pieces of information: the content model and the form to use for ingest.

Selecting the Associated Form

[ADD PDF &

Select form:

View Add

Home » Digital repository » Islandora PDF Demo Collection » Digital Repository

Digital Repository

Ingest digital object into islandora:pdf _collection Step #1

Content models available:

€

Object Details

Content models define datastream composition, relationships between this and other conte

Additional information may be found here.

[oai_dc_basic: (DESCMD) |] Select the oai_dc_basic form.

We’'ll be adding a PDF.

Next

Select the form to populate the metadata of the new object.

€

Select Next to move on to the

form.

Entering Metadata

You will be presented with the form that we created during this tutorial. You'll need to fill it in. Once you’ve completed your data entry, submit the form.

Home » Digital repd

Default display of object.

fting Research Data and Indigenous Communities » Digital Repository

Digital Rep

Description

View Document

sitory

Read Online Object Details

Select Edit to edit
your metadata.

MetaData

title

creator
creator
subject
subject

description

date
type
identifier

rights

Connecting Research Data and Indigenous Communities
Kirsten Thorpe

Elizabeth Mulhollann

Systems and Information Theory

Information Systems

in this poster, we propose to demonstrate the workflow and program of consultation developed B
Data Archive (ATSIDA) to support the digital return of research data to Indigenous Australian com)
preservation and reuse in both the research community and by the general public.

06/13/2011
Text
islandora; 21

Rights held by the authors. Contact elizabeth.mulhollann@uts.edu.au for permission to reuse.

Home » Digital repository » Islandora PDF Demo Collection » Connecting Re

Digital Repository
Description Read Online Object Details

View Edit

Choose edit form.

Forms:
| oai_dc_basic: (DESCMD) & | «— Select your form.

Select the form to populate the metadata of the new object.

Click on Next.

Next €

Home » Digital repository » Islandora PDF Demo Collection » Connecting Research Data and Indigenous Communities » Digital Re

Digital Repository

Description Read Online Object Details
The same form used to

View | Edit create, can also be used
to edit the metadata.

(Browse... |
A —

Browse for your PDF
Title: *
Connecting Research Data and Indigenous Communities
This is the title.
Creator(s)
Kirsten Thorpe ad
The creator(s) of the work

Elizabeth Mulhollann &

Description:

In this poster, we propose to demonstrate the workflow and program of consultation developed by the Aboriginal a
Torres Strait Islander Data Archive (ATSIDA) to support the digital return of research data to Indigenous Australian
communities, while also facilitating data preservation and reuse in both the research community and by the genera
public.

The description of the work.

Case Study: Thinking Through a Data Problem

Developing a Content Model for a collection of typewritten letters

Our starting point is a scanned version of a typewritten letter, which has been saved as a TIFF.

Questions to Ask

1.

2.

What kind of metadata do you want to gather? Metadata that describes the object, the administrative data related to the object, the technical
metadata of the object you digitized, and/or metadata that relates to the longterm preservation of the object.
What kind of metadata schema will | use to describe each letter?
a. If you are concerned with descriptive metadata is Dublin Core sufficient or would MODS be more appropriate (or EAD, etc.)?
i. You'll need to review your content and select a schema that best matches your needs. Avoid creating your own schema.
b. You need to use the FormBuilder to create your metadata form.

. If the letters are more than a single page, how will you deal with that?

a. There a few options here:
i. Each letter is its own digital object and is related (using RELS-EXT or embedded in the metadata) to a ‘collection object' that
gathers the pages of the letter together.
ii. Asingle letter object could have several several page datastreams.
iii. Our preference would be to take an 'atomistic’ approach: each page of a letter would be created as a digital object.

. How will your users view/search your collection of letters?

a. Will you have a grid display of your letter images? Or a list view? Or both?
b. Will you need a thumbnail for each of your letter images?
i. If so you'll need to create a thumbnail datastream that is part of your letter object. What happens if you have many pages in the
letter? Just a thumbnail for the first page? What if in a search a user gets a list of letters/pages?

. What will the view a single letter look like?

a. Will you display the metadata of the letter and web based image of the letter (you may want to use some wireframing tools to sketch out
your views, eg. try the Pencil Project, a plugin for Firefox)?

. What derivatives will you need to provide the various views to your users?

a. Thumbnail.

b. Web based image of the letter.

c. You could add tremendous value to your collection by extracting the text from the page image using an OCR program and including the
resulting text in your index for search/discovery.

Based on the outline above we can start to determine the datastreams that will make up a typical letter digital object, which will then help us define the
content model for this type of digital object.

http://www.google.com/url?q=http%3A%2F%2Fwww.evolus.vn%2FPencil%2FDownloads.html

Letter Digital Object

RDF Relationships
(RELS-EXT)

Dublin Core
(DC)
Audit Trail
(AUDIT)

Archival TIFF
(TIFF)

Web Based Image
(JPG)
Thumbnail
(TN)
Descriptive Metadata
(MODS)

Extracted Text
(OCR)

Digital object
demo:letter0001 }idfnﬁﬁerJ
o . System Properties
Dbject Propertles }Mnnage and track object

- Reserved Datastreams
Key object metadata

._Datastreams
Aggregates content items

Here is a table of Datastreams, including the Datastream IDs that we've assigned, and the expected mimetype of the Datastreams.

{*}Datastream Label{*} | {*}Datastream ID{*}

Archival TIFF TIF
JPG Image JPG
Letter Thumbnail TN

Descriptive Metadata | MODS

Extracted Text OCR

Letter Content Model

Mimetype
imageftif, imageftiff

imagel/jpg, image
fipeg

image/jpg
text/xml

text/plain

Digital object
demo:letterCModel -idleg;:ﬁzrj &
Object Properties oo ot ot ot
RDF Relationships)
(RELS-EXT)
DUinn CDFE —Reserved Datastreams
(DC} Key abject metadata
Audit Trail
(AUDIT) _
Datastreams for letter objects
(DS-COMPOSITE-MODEL)
L Datastreams
Islandora Content Model Aggregates content items
(ISLANDORACM)]

When compared to the Letter Digital Object, the content model seems a bit thin. Much of the work of the content model is contained within the
ISLANDORACM Datastream. Below you will find a commented FOXML version of the demo:LetterCModel content model. The bulk of the work of the
ISLANDORACM is performed by a variety of functions which are contained within .inc files (PHP files) in the islandora/plugins directory.

Sample Content Model

<?xm version="1.0" encodi ng="UTF-8"?>

<foxm :digital Cbject VERSION="1.1" PID="denp: LetterCMVdel" xm ns: foxm ="info: f edora/ f edor a- system def/foxm #"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance" xsi: schemalLocati on="i nfo: f edora/f edor a- syst em def/f oxm #
[http://ww. fedora.info/definitions/1/0/foxn 1-1.xsd]">

<\l-\- Object Properties -->

<f oxnm : obj ect Properties>

<foxm : property NAME="i nfo: f edor a/ f edor a- syst em def / nodel #st at e" VALUE="Active"/>

<foxm : property NAME="i nfo: fedora/fedora-system def/ nodel #l abel " VALUE="Large Content Mbdel"/>

<foxm : property NAME="i nf o: f edor a/ f edor a- syst em def / nodel #owner | d* VALUE="f edor aAdni n"/ >

<foxm : property NAME="info: f edor a/ f edor a- syst em def/ nodel #cr eat edDat e" VALUE="2011-07-21T11:40: 51.192Z"/ >
<foxm : property NAME="i nf o: f edora/fedora-system def/vi ew#l ast Modi fi edDat e" VALUE="2011-07-21T13: 23: 53. 225Z"/ >
</ foxm : obj ect Properti es>

<\!-\- Datastream Conposite Mdel -->

<f oxn : dat ast ream | D="DS- COWPOSI TE- MODEL" STATE="A" CONTROL_GROUP="X" VERS|I ONABLE="tr ue" >
<f oxnl : dat ast r eanVer si on | D="DS- COVPCSI TE- MODEL. 0" LABEL="Dat astreans for this object" M METYPE="text/xm ">

<f oxm : xnl Cont ent >
<dsConposi t eModel xm ns="i nfo: f edor a/ f edor a- syst em def / dsConposi t eMbdel #" >

<dsTypeMbdel |D="DC"'>
<f orm FORMAT_URI ="ht t p: / / www. openar chi ves. org/ OAl / 2. 0/ oai _dc/" M ME="text/xm "></fornm
</ dsTypeModel >

<dsTypeModel | D="RELS- EXT">
<f orm FORMAT_URI ="i nf o: f edor a/ f edor a- syst em Fedor aRELSExt - 1. 0" M ME="appl i cati on/rdf +xm " ></f or n»>
</ dsTypeModel >

<dsTypeModel |D="TI FF">
<form M ME="i mage/tiff"></fornp

https://github.com/Islandora/islandora/tree/6.x/plugins

</ dsTypehModel >

<dsTypeMdel |D="JPG'>
<form M ME="i mage/ j peg" ></f or n»
</ dsTypeModel >

<dsTypeModel |D="TN'>
<form M ME="i mage/ j peg" ></f or n»
</ dsTypeModel >

<dsTypeMdel | D="MODS">
<form M ME="t ext/ xm "></fornm>
</ dsTypeModel >

<dsTypeModel |D="OCR'>
<form M ME="t ext/ pl ai n"></fornp
</ dsTypehModel >

</ dsConposi t eModel >
</ foxm : xm Cont ent >
</ foxm : dat ast r eanVer si on>
</ foxm : dat astreanp

<\!-\- Dublin Core Datastream-->

<foxm : datastream | D="DC' STATE="A" CONTROL_GROUP="X" VERSI ONABLE="t rue" >

<foxm : dat ast reanVersi on | D="DCl. 0" LABEL="Dublin Core Record for this object" CREATED="2011-07-21T11:40:51.192
Z" M METYPE="text/xm"

FORMAT_URI =" ht t p: / / ww. openar chi ves. org/ OAl / 2. 0/ oai _dc/" SI ZE="393">

<f oxm : xm Cont ent >

<oai _dc: dc xm ns:oai _dc="http://ww. openarchi ves. org/ QAl/ 2.0/ oai _dc/" xm ns:dc="http://purl.org/dc/elenents/1.1
o

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance" xsi:schemaLocati on="http://ww. openarchi ves.org/ QAl/2.0

/ oai _dc/

[http://ww. openarchives. org/ QAl /2. 0/ oai _dc. xsd] ">

<dc:title>Large Content Model </dc:title>
<dc:identifier>deno: LetterCvbdel </dc:identifier>

</ oai _dc: dc>

</ foxm : xm Cont ent >

</ foxm : dat ast r eanVer si on>
</ foxm : dat ast r ean»

<\!-\- Relationship / RDF datastream... in this case the relationship hashWdel -->

<foxm : dat astream | D=" RELS- EXT" STATE="A" CONTROL_GROUP="X" VERS|I ONABLE="t rue" >

<f oxnm : dat ast reanVer si on | D="RELS- EXT. 0" LABEL="Fedora Object-to-Object Relationship Metadata" CREATED="2011-07-
21T11: 40: 52. 105Z"

M METYPE="t ext/xm " S| ZE="327">

<foxm : xm Cont ent >

<rdf: RDF xm ns: rdf ="http://ww. w3. or g/ 1999/ 02/ 22-r df - synt ax- ns#" >
<rdf: Description rdf:about="info:fedoral/deno: Letter CVodel ">

<f edor a- nodel : hasMbdel xml ns: f edor a- nodel ="i nf o: f edor a/ f edor a- syst em def/ nodel #* rdf:resource="info: fedora
/ f edor a- syst em Cont ent Mbdel - 3. 0" >

</ f edor a- nodel : hashbdel >

</rdf: Description>

</ rdf : RDF>

</ foxm : xm Cont ent >

</ foxm : dat ast r eanVer si on>

</foxn : dat astreanr

<\!-\- Islandora Content Mdbdel Datastreamfor this Content Mddel ... it is where the ingest rules, display
met hods, m netypes, and datastream|IDs related to the object to be created -->

<foxm : dat astream | D="1 SLANDORACM' STATE="A" CONTROL_GROUP="X" VERS| ONABLE="t r ue" >

<f oxnl : dat ast reanVer si on | D="1 SLANDORACM 0" LABEL="Isl andora Large Content Model" CREATED="2011-07-21T13: 23:
53.225Z2" M METYPE="application/xm "

S| ZE="2175" >

<f oxm : xm Cont ent >

<content _nodel xm ns="http://ww.islandora.ca" xm ns:xsi="http://ww. w3.org/ 2001/ XM_Schema- i nst ance" name="
Large Content Model "

xsi :schemaLocation="http://ww.islandora.ca [http://local host/i sl andoracm xsd] ">

<\!l-\- the mnmetype for uploading defined -->

<m net ypes>

<type>i mage/ ti ff</type>
<type>i mage/ tif</type>
</ m netypes>

<\!-\- the actions (enmbedded in .inc files which are php files) that happen to tif inmges when they are
ingested -->

<i ngest _rul es>

<rul e>

<applies_to>i mage/tif</applies_to>
<applies_to>i mage/tiff</applies_to>

<\!-\- this ingest nethod calls the ImageManipulation.inc file in the islandora/plugins directory and calls the
doCOCR function in that .inc file.

doOCR runs the tif inmage through tesseract and pushes the output into the OCR datastream of the Letter Digital
bj ect that gets created \-->

<i ngest _net hods>

<i ngest _net hod cl ass="1 nageMani pul ati on" dsi d="OCR"' fil e="pl ugi ns/ | nageMani pul ation.inc" nethod="doCCR"
nmodi fied_files_ext="txt"

nmodul e="f edora_r eposi tory"></ingest _net hod>

</ingest _met hods>

</rul e>

<rul e>

<applies_to>i mage/tif</applies_to>

<applies_to> mage/tiff</applies_to>

<\!-\- this ingest nethod calls the ImageManipulation.inc file in the islandora/plugins directory and calls the
creat eThunbnai |

function and passes the width/height parameters to i magemagi ck which converts the tif inage into a jpg

t hunbnai | and pushes that

result into the TN datastream-->

<i ngest _net hods>
<i ngest _nmet hod dsid="TN' fil e="pl ugi ns/ | mageMani pul ation.inc" method="createThunbnail" nodified_fil es_ext="jpg"
nmodul e="f edora_repository">

<par anet er s>

<par anet er name="wi dt h">120</ par anet er >
<par anet er name="hei ght " >120</ par anet er >
</ par anet er s>

</ingest _met hod>
</ingest _met hods>
</rul e>
</ingest_rul es>

<\!-\- a default DC ingest formfor the object ... ideally we will build a MODS based formto hold the netadata
and it will get
autonatically transformed to DC on ingest/creation ... this is just a placehol der -->

<i ngest _form dsi d="DC' page="2">

<f orm bui | der _nmet hod cl ass="bui | dQDCFornt' fil e="FornBuil der" handl er="" nethod="handl eQDCFor nf nobdul e="pl ugi ns
/ DenoFor nBui | der . i nc">

</ form bui | der _net hod>

<f orm_ el enent s>

<elenent |abel ="Title" name="dc:title" required="fal se" type="textfield">
<description>Title of the letter</description>

</ el enent >

</ form el enment s>

</ingest_form

<\!-\- the list of datastreanms that are included in the Letter Digital Cbject. By listing the datastreanms here,
we will see them
in the dropdown |ist when we administer the object -->

<dat ast r eans>
<dat ast r eam dsi d="TI FF" ></ dat ast r ean>
<dat ast r eam dsi d="JPG' >

<\!-\- Display nethods are sinmlar to ingest rules in that they call php functions that are enbedded in .inc
files. In this case

we call the ShowDenoStreans.inc in the islandoral/plugins/ directory. There are sonme default display nethods
enbedded in the

islandora nodule ... eg. for the TN datastream-->

<di spl ay_net hod cl ass="ShowsSl i deStreans! nFi el dSets" defaul t="true" file="pl ugi ns/ ShowDenoStreans.inc" nethod="
showdPG' nodul e="

fedora_repository"></display_mnet hod>

</ dat ast r ean®

<dat astream dsi d=" OCR" >

<di spl ay_met hod cl ass="ShowTl FFSt r eansl nFi el dSets" fil e="pl ugi ns/ ShowTl FFStreans. i nc" met hod="showCCR' nodul e="
fedora_repository">

</ di spl ay_net hod>

</ dat ast r ean®

<dat ast r eam dsi d="TN'></ dat ast r ean®
<dat astream dsi d="MODS" ></ dat ast r ean
</ dat ast r eans>

</ cont ent _nodel >

</ foxm : xm Cont ent >

</ foxm : dat ast r eanVer si on>

</ foxm : dat astrean»

</ foxm : digital Cbject>

	Chapter 7 - Customizing Islandora

