
Authentication and Authorization

Overview
Servlet Container Configuration

Configure your repo.xml file
Configure your repository.json file
Configure your web.xml
Configure your web application container

Jetty
Tomcat

Authorization Delegates
Overview
Fedora Administrators (fedoraAdmin user role)
FedoraAuthorizationDelegate Implementations
Step-by-step:
Example repo.xml (repository and security beans)
Example repository.json (security section)

Access Roles Module
Overview
REST API
Example Data
Inheritance of Effective Roles
Cascading Delete Permission
Authorization Operations and Example

Order of operation:
Examples:

Basic Role-based Authorization Delegate
Roles
Policy

Role/Permission Matrix
Configuring the Basic Role-Based Authorization Delegate

XACML Authorization Delegate
Requirements
How to Map to XACML Policies

Policy Persistence
Finding the Effective Policy Set
No Applicable Policies
Implementation

Local PDP
Cascading Deletes
XACML AuthZ Delegate
PolicyFinderModule (w/PolicyLocator for JBossPDP configuration)
ModeShapeResourceFinderModule
AttributeFinderModule(s)

ResourceAttributeFinderModule(s)
SubjectAttributeFinderModule
EnvironmentAttributeFinderModule

XACML Role-Based Access Control
Bypassing Authorization

Step-by-Step:
Example repository.json (security section)

Overview
The Fedora 4 Authentication (AuthN) and Authorization (AuthZ) framework is designed to be flexible and extensible, to allow any organization to configure
access to suit its needs.

The following sections explain the Fedora 4 AuthN/Z framework, and provide instructions for configuring some out-of-the-box access controls.

For clarity's sake, a distinction is made between Authentication and Authorization:

Authentication answers the question "who is the person, and how do I verify that they are who they say they are?" Fedora 4 relies on the web
servlet container to answer this question.
Authorization answers the question, "does this person have permission to do what they want to do?". Fedora 4 provides three different ways to
answer this question:

Simple servlet container authentication. Anyone who has authenticated through the web application container (Tomcat, Jetty,
WebSphere, etc.) has permission to do everything – in effect all, authenticated users are superusers.
Basic Access Roles authorizations. Authenticated users are mapped onto one or more preconfigured roles; a user's role determines
what they have permission to do.
XACML authorizations. Policies created using the XACML framework are used to determine what operations are permissible to whom,
using user and resource properties exposed to the XACML engine.

1.

Servlet Container Configuration
Fedora 4 uses servlet container authentication (Realms) to provide minimal protection for your repository, including the set up of "superuser"
accounts. User credentials are configured in your web application container, usually in a properties file or XML file. By configuring superuser accounts you
can require authentication for all management (write) operations. This document describes how to set up Fedora and either Tomcat or Jetty to enable
HTTP Basic Authentication, using simple user files. Consult your web application server documentation for other ways to configure and manage
users; Fedora can handle any user principal passed to it by the servlet container, as provisioned by any of the container's supported authentication
mechanisms.

The superuser role is . This is comparable to the superuser role in Fedora 3, used for Fedora 3 API-M operations. fedoraAdmin fedoraAdmin

Configure your repo.xml file
Configure your repository.json file
Configure your web.xml
Configure your web application container

Jetty
Tomcat

If you are starting from the pre-packaged authorization war file (fcrepo-webapp-<version>-auth.war), you should skip to step #4 below.

Configure your repo.xml file

Add the beans and to your repo.xml file, and make the bean dependent on authenticationProvider fad modeshapeRepofactory authenticationProvi
. Use the class as your authentication provider. Here is an example repo.xml der org.fcrepo.auth.ServletContainerAuthenticationProvider

that configures authentication and authorization using the Basic Roles authorization delegate:

1.

2.

repo.xml with authentication configured

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-
3.0.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-
context-3.0.xsd
 http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util.
xsd">

 <!-- Context that supports the actual ModeShape JCR itself -->

 <context:annotation-config/>

 <bean name="modeshapeRepofactory"
 class="org.fcrepo.kernel.impl.spring.ModeShapeRepositoryFactoryBean"
 p:repositoryConfiguration="${fcrepo.modeshape.configuration:classpath:/config/servlet-auth
/repository.json}"
 depends-on="authenticationProvider"/>

 <bean class="org.modeshape.jcr.JcrRepositoryFactory"/>

 <!-- Optional PrincipalProvider that will inspect the request header, "some-header", for user role
values -->
 <bean name="headerProvider" class="org.fcrepo.auth.common.HttpHeaderPrincipalProvider">
 <property name="headerName" value="some-header"/>
 <property name="separator" value=","/>
 </bean>

 <util:set id="principalProviderSet">
 <ref bean="headerProvider"/>
 </util:set>

 <bean name="fad" class="org.fcrepo.auth.roles.basic.BasicRolesAuthorizationDelegate"/>

 <bean name="authenticationProvider" class="org.fcrepo.auth.common.
ServletContainerAuthenticationProvider">
 <property name="fad" ref="fad"/>
 <property name="principalProviders" ref="principalProviderSet"/>
 </bean>

 <!-- For the time being, load annotation config here too -->
 <bean class="org.fcrepo.metrics.MetricsConfig"/>
</beans>

Configure your repository.json file

Modify the security section to enable both authenticated (via authentication provider) and internal sessions between Fedora and ModeShape. It
should match this block:

2.

3.

4.

repository.json security

"security" : {
 "anonymous" : {
 "roles" : ["readonly","readwrite","admin"],
 "useOnFailedLogin" : false
 },
 "providers" : [
 { "classname" : "org.fcrepo.auth.common.ServletContainerAuthenticationProvider" }
]
 },

Configure your web.xml
Configure your .web.xml

Modify by uncommenting the security configurationfcrepo-webapp/src/main/webapp/WEB-INF/web.xml

 <!--Uncomment section below to enable Basic-Authentication-->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Fedora4</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>DELETE</http-method>
 <http-method>PUT</http-method>
 <http-method>HEAD</http-method>
 <http-method>OPTIONS</http-method>
 <http-method>PATCH</http-method>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>fedoraUser</role-name>
 <role-name>fedoraAdmin</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>fcrepo</realm-name>
 </login-config>

The "auth-constraint" element must contain the roles defined as your users (see below for jetty and tomcat).

Configure your web application container

Jetty
Create your file. This file contains entries in the format , wherejetty-users.properties username: password [, role, ...]

username is the user's login id (the principal)
password is the user's password
role is the servlet role they are assigned upon login; jetty allows you to specify any number of roles (or no role at
all). Fedora currently supports two roles: , which is the superuser role, and has rights to do fedoraAdmin
everything; and , which is a user role, and must be granted permissions by the Policy Enforcement Point to fedoraUser
perform actions.

Sample file that contains three users, two of whom are regular users, and the third of whom (fedoraAdmin) jetty-users.properties
is a Fedora superuser:

jetty-users.properties

testuser: password1,fedoraUser
adminuser: password2,fedoraUser
fedoraAdmin: secret3,fedoraAdmin

https://github.com/futures/fcrepo4/blob/master/fcrepo-webapp/src/main/webapp/WEB-INF/web.xml

Configure your Jetty login realm.
Standalone
Modify your file to configure the login realm and include the jetty-users.properties file: jetty.xml

jetty.xml login service

<Configure class="org.eclipse.jetty.webapp.WebAppContext">

 <!-- Set this to the webapp root of your Fedora 4 repository -->
 <Set name="contextPath">/</Set>
 <!-- Set this to the path of of fcrepo4 WAR file -->
 <Set name="war"><SystemProperty name="jetty.home" default="."/>/webapps/fcrepo4</Set>

 <Get name="securityHandler">
 <Set name="loginService">
 <New class="org.eclipse.jetty.security.HashLoginService">
 <Set name="name">fcrepo4</Set>
 <!-- Set this to the path to your jetty-users.properties file -->
 <Set name="config"><SystemProperty name="jetty.home" default="."/>/path/to
/jetty-users.properties</Set>
 </New>
 </Set>
 </Get>

</Configure>

Embedded in Maven

The fcrepo-webapp Maven project includes jetty-maven-plugin. The property sets the location of jetty.users.file
the file. Run the fcrepo-webapp server with the following system property:jetty-users.properties

-Djetty.users.file=/path/to/jetty-users.properties

See the documentation for more details. Jetty Authentication

Tomcat
Create or edit your file. It has entries of the form$CATALINA_HOME/conf/tomcat-users.xml

 <user name="principal" password="password" roles="role1, role2, ..." />

where:

name is the user's login id (the principal)
password is the user's password
roles are the servlet roles they are assigned upon login; tomcat allows you to specify any number of roles (or no role at
all). Fedora currently supports two roles: , which is the superuser role, and has rights to do fedoraAdmin
everything; and , which is a user role, and must be granted permissions by the Policy Enforcement Point to fedoraUser
perform actions.

Sample file that contains three users, two of whom are regular users, and the third of whom (fedoraAdmin) is a tomcat-users.xml
Fedora superuser:

tomcat-users.xml

<tomcat-users>
 <role rolename="fedoraUser" />
 <role rolename="fedoraAdmin" />
 <user name="testuser" password="password1" roles="fedoraUser" />
 <user name="adminuser" password="password2" roles="fedoraUser" />
 <user name="fedoraAdmin" password="secret3" roles="fedoraAdmin" />
</tomcat-users>

Configure your Tomcat login realm.
Modify your file file to configure the login realm with the Fedora 4 webapp context:$CATALINA_HOME/conf/server.xml

http://www.eclipse.org/jetty/documentation/current/configuring-security-authentication.html

1.
2.

3.
4.
5.
6.

Tomcat server.xml Realm

<Context>
...
 <Realm className="org.apache.catalina.realm.UserDatabaseRealm"
 resourceName="UserDatabase" />
</Context>

See the documentation for more details.Tomcat Realms

Authorization Delegates

Overview

Fedora Authorization Delegates allow you to implement one interface to enforce access control over your Fedora repository. This interface,
FedoraAuthorizationDelegate, has callbacks that allow you to restrict ModeShape operations and filter search results. After following these configuration
steps, Fedora's REST endpoints will respond with 403 response codes when the requested action is unauthorized by the authorization delegate.

Use of an authorization delegate and Fedora-specific authorization is optional. You can also configure Fedora to run without API security. You may want to
only enforce container authentication or leave the service running completely unsecured, behind a firewall for instance. For details, see How to configure

.Fedora without authorization

Fedora Administrators (fedoraAdmin user role)

The authorization delegate is not consulted when servlet credentials identify a client with the role. When the container has authenticated the fedoraAdmin
connected client as a , all actions are permitted and PEP is bypassed.fedoraAdmin

FedoraAuthorizationDelegate Implementations

There are two reference implementations available:

Basic Role-based Authorization Delegate - An authorization delegate that operates on three fixed roles that may be assigned throughout the
repository tree. (reader, writer, admin)

XACML Authorization Delegate

You can also create an authorization delegate implementation and perform security checks differently, possibly including calls to remote services.

Two files contain the configuration options for authorization delegates:

repo.xml: the global repository configuration file. Three beans enable the PEP extension:
modeshapeRepoFactory: should contain a dependency on the beanauthenticationProvider
authenticationProvider: should specify the class, so that the servlet container handles ServletContainerAuthenticationProvider
authentication

This bean should have a property "fad" that points to the bean, to enable the servlet container authentication provider to use fad
the authorization delegate

fad: should point to your class with the authorization delegate implementation
repository.json: the ModeShape configuration file. It contains a security section, where the authentication between Fedora internal session
and the ModeShape storage layer is configured. Note that the roles configured here do not apply to end user authentication and authorization..

Step-by-step:

Open the repo.xml file in your Fedora web application.
Add your authorization delegate implementation as a bean in this file and give it the ID of "fad". Your authorization delegate bean may include
more specific configuration details than the example.
Now add the Fedora ModeShape Authentication Provider bean. (see repo.xml example)
Make sure that your modeshapeRepofactory bean has the depends-on attribute pointing at the authenticationProvider (see repo.xml example).
Open your repository.json file.
Add org.fcrepo.auth.ServletContainerAuthenticationProvider as a provider in the security section. (see repository.json example)

Example repo.xml (repository and security beans)

http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html
https://wiki.lyrasis.org/display/FEDORA40/How+To+Bypass+Authorization
https://wiki.lyrasis.org/display/FEDORA40/How+To+Bypass+Authorization
https://wiki.lyrasis.org/display/FEDORA40/Basic+Role-based+Authorization+Delegate
https://wiki.lyrasis.org/display/FEDORA40/XACML+Authorization+Delegate

<bean name="modeshapeRepofactory" class="org.fcrepo.kernel.spring.ModeShapeRepositoryFactoryBean"
 depends-on="authenticationProvider">
 <property name="repositoryConfiguration" value="${fcrepo.modeshape.configuration:repository.json}" />
</bean>

<bean name="fad" class="your.own.implementation"/>

<bean name="authenticationProvider" class="org.fcrepo.auth.ServletContainerAuthenticationProvider">
 <property name="fad" ref="fad"/>
</bean>

Example repository.json (security section)

"security" : {
 "anonymous" : {
 "roles" : ["readonly","readwrite","admin"],
 "useOnFailedLogin" : false
 },
 "providers" : [
 { "classname" : "org.fcrepo.auth.ServletContainerAuthenticationProvider" }
]
},

Access Roles Module

Overview
REST API
Example Data
Inheritance of Effective Roles
Cascading Delete Permission
Authorization Operations and Example

Overview
This module creates a REST API to assign new roles to identities and to query the roles already assigned on Fedora .resources

In roles-based access control, users or groups are not granted specific actions on resources; rather, users and groups have roles assigned to them on
resources, and these roles are mapped onto permitted actions elsewhere. This makes it much easier to manage permissions globally: rarely will masses of
resources need to be updated if their permissions change. Only the role-to-permission mapping will be updated. Role-based access control is a common
pattern in security, providing extensible role-specific behavior while retaining straightforward management.

This module does not define any specific roles or enforce permissions granted to roles. For roles to be effective, this module must be configured alongside
an authorization delegate that is aware of roles. One roles-aware authorization delegate is provided as a reference implementation, the Basic Roles-Based

.Authorization Delegate

REST API
The module adds another REST endpoint to every Fedora path. The URL pattern is as follows:resource

<path to Container>/fcr:accessroles

REST methods:

method description

GET Retrieves the roles assigned on a resource.

GET w/effective parameter Retrieves the effective roles assigned on a resource, which may cascade from an ancestor role assignment.

POST Sets all the roles assigned on a resource.

DELETE Removes any roles assigned on a resource, such that effective roles are inherited again.

The POST and GET methods currently support a JSON structure (as Content-type) where principals are mapped to lists of roles:application/json

https://wiki.lyrasis.org/display/FEDORA40/Glossary
https://wiki.lyrasis.org/display/FEDORA40/Basic+Role-based+Authorization+Delegate
https://wiki.lyrasis.org/display/FEDORA40/Basic+Role-based+Authorization+Delegate
https://wiki.lyrasis.org/display/FEDORA40/Glossary

1.

2.

3.

4.
5.

{
 "johndoe" : ["reader"],
 "janedoe" : ["writer"],
 "freddoe" : ["patron", "editor"]
}

This module assigns one or more roles to a string, which is the name of a security principal. () The principals used in your repository java.security.Principal
environment must have unique names. You may use whatever principals you wish, but we recommend applying the appropriate standard for your
environment. This module does not validate principal names.

Fedora uses a principal named "EVERYONE" to represent the general public. This principal is added to every incoming web request. You may assign any
role to the EVERYONE principal.

By default, role names are not validated, since the module does not define the set of role names that may be assigned in Fedora. However, you
may configure a set of specific roles and then the API will validate roles.

Example Data

root/ (default content roles, i.e. no roles for anyone)
 Container A (EVERYONE => reader; johndoe => admin)
 Binary 1 (johndoe => admin)
 Container Q (EVERYONE => reader; johndoe => admin)
 Container R (janedee => admin)
 Container B (EVERYONE => reader; johndoe => admin)
 Container T
 Container V
 Container C

Inheritance of Effective Roles
Descendant resources inherit the roles assigned on ancestor resources . If a resource has any roles only if they have no roles assigned themselves
assigned, .these assignments override ALL ancestor assignments

The following cases, based on the example data above, demonstrate how inheritance plays out.

Binary 1 of Container A only allows one principal to access the resource: . He will have privileges. None of the ACLs on johndoe admin
Container A will be applied; the binary will not inherit the ACL on Container A. EVERYONE => reader
Container R, a child of Container Q, has its own content ACL: has privileges on Container R. No one else has any access to the janedee admin
resource, not even the parent resource (Container Q) principals (and).EVERYONE johndoe
Container T, a child of Container B, has no content ACLs. So it inherits the ACLs of its most immediate ancestor with content ACLs: Container
B. has reader privileges on Container T, and has privileges on the Container.EVERYONE johndoe admin
Container V also inherits the ACLs of Container B (its most immediate ancestor with content ACLs).
Container C has no content ACL; it inherits the ACLs of the root resource, which is to say, nothing. No one other than has any fedoraAdmin
access to this Container.

Cascading Delete Permission
When deleting a resource, the user must have an effective role that will allow them to delete the descendant Containers under the resource. (binaries, ALL
child Containers, etc..) If any descendant resource cannot be deleted, then the entire delete transaction will be denied.

For example, in the graph shown above, the principal cannot delete container A, although he has an admin role on it and its binary; that is johndoe
because he does not have an effective role on Container R, the resource's grandchild, that will permit him to delete it. If he wants to delete Container A,
he will first have to ask to delete Container R.janedee

Authorization Operations and Example
(Editor's note: this section would make more sense within the Basic Roles auth delegate documentation/page)

Order of operation:

Container Authentication: A user comes into the system. They are assigned a :user principal
If they authenticate through some authentication gateway, then their principal may be generated from some of the person's attributes;
Whether they authenticate or not, the request will always acquire an "EVERYONE" principal.

Fedora Principal Provider extensions: Principal provider extensions may bring in more principals after authentication, such as groups, from
sources like LDAP.
Fedora Roles Authorization Delegate Queries for Assigned Roles on Content: What roles have been assigned?

The authorization layer queries the requested repository resource(s) for any content-assigned roles.

http://docs.oracle.com/javase/7/docs/api/java/security/Principal.html

1.

a.

b.

c.

d.

e.

2.
a.
b.
c.
d.

3.
a.
b.
c.

d.
e.

4.
a.
b.
c.

d.
e.

If none are found locally, then it will query each ancestor in turn until role assignments are found.
If no role assignments are found in the tree of resources, then a default set of role assignments is used. (see Container C above)

Fedora Roles - Role Resolution: What roles does this request have?Authorization Delegate
The set of principals in the request are compared to the principals in the ACLs on the resource. The roles for each matching principal in
the Container ACL are the for the user.effective roles
At this point we have the effective access roles for this operation

Fedora Roles - Policy Enforcement: Does this role have permission to perform the requested action?Authorization Delegate

Note: The Fedora Authorization Delegate is an extension point, so enforcement will vary by the
chosen implementation. We assume that installations will combine the access roles module with a
roles-based authorization delegate.
The effective roles, assigned to the user on the content, are used to determine if the user has
permission to perform the action on a given resource.

 implementation does permission checks in java code:Basic Roles authorization delegate

Permission is determined by evaluating at a minimum the effective roles for the user on the
resource in question, and the action requested.

In other roles-based authorization delegate implementations, more factors may also enter into the
equation to determine permission.

The authorization delegate will return a response to ModeShape, which will throw an exception to Fedora if
access has been denied.
Fedora will respond with a 403 if the given REST operation is denied.

The one exception to this process is the fedoraAdmin container role. If the request has a fedoraAdmin user
role (in the container), then no resource checks are made. The authorization delegate is not consulted as
admins have permission to do everything. Resources will never have the fedoraAdmin role explicitly
assigned to them, since it is a container role and not a content role. (e.g. a tomcat user role)

Examples:

Unauthenticated user requests to see Container A.
The user is assigned the user principal "EVERYONE".
The authorization delegate intercepts the request, gets the ACLs for Container A: "EVERYONE" =>
"reader" and "johndoe" => "admin".
The compares the user principal "EVERYONE" to the principals in Container authorization delegate
A's ACLs, and sees that "EVERYONE" matches. The effective role for this request is "reader", the
role paired with the principal "EVERYONE" on the Container.
The sees if the role "reader" can view the Container; it can.authorization delegate
The returns "yes", and the request proceeds.authorization delegate

Unauthenticated user requests to see binary 1 on Container A.
The user is assigned the user principal "EVERYONE".
The intercepts the request, gets the ACLs for binary 1: "johndoe" => "admin".authorization delegate
The compares the user principal "EVERYONE" to the principals in binary 1's ACLs, but does not find a match.authorization delegate
The returns "no", and the request is denied.authorization delegate

Unauthenticated user requests to delete Container B.
The user is assigned the user principal "EVERYONE".
The intercepts the request, gets the ACLs for Container B: "EVERYONE" => "reader" and "johndoe" => "admin".authorization delegate
The compares the principal "EVERYONE" to the principals in Container B's ACLs, and sees that "EVERYONE" authorization delegate
matches. The effective role for this request is "reader", the role paired with the principal "EVERYONE" on the Container.
The sees if the role "reader" can delete the Container; it cannot.authorization delegate
The returns "no", and the request is denied.authorization delegate

John Doe requests to update binary 1 on Container A.
The user is assigned the user principals "johndoe" and "EVERYONE".
The intercepts the request, gets the ACLs for binary 1: "johndoe" => "admin".authorization delegate
The compares the user principals "johndoe" and "EVERYONE" to the principals in binary's ACLs, and sees that authorization delegate
"johndoe" matches. The effective role for this request is "admin", the role paired with the principal "johndoe" on the Container.
The sees if the role "admin" can update the Container; it can.authorization delegate
The returns "yes", and the request proceeds.authorization delegate

Basic Role-based Authorization Delegate

This authorization delegate makes decisions based on the four basic roles of "metadata reader", "reader", "writer", and "admin". These
roles are assigned to principals on Fedora . Assigned roles are inherited through the repository tree until resources
blocked by another assignment.

https://wiki.lyrasis.org/display/FEDORA40/Basic+Role-based+Authorization+Delegate
https://wiki.lyrasis.org/display/FEDORA40/Glossary

The role has not yet been implemented.metadata reader

This authorization delegate makes use of the to assign and query roles in the repository.Access Roles Module

Roles

metadata reader - can retrieve information about Fedora Containers, but cannot retrieve content
reader - can retrieve information about Fedora Containers, including content
writer - all permissions of reader; can create, modify and delete Fedora Containers
admin - all permissions of writer; can modify the roles assigned to Fedora Containers

Policy

The permissions granted to these roles are fixed. Rather than consulting any declarative policy, this authorization delegate has hard-coded role-permission
assignments in the source code.

Role/Permission Matrix

 metadata reader reader writer admin

read properties X X X X

read content X X X

write X X

write roles X

Configuring the Basic Role-Based Authorization Delegate

See for more information on how an authorization delegate is configured.Authorization Delegates

Edit your file to configure the authentication provider. The file should contain these three beans, as shown:repo.xml

<bean name="modeshapeRepofactory" class="org.fcrepo.kernel.spring.ModeShapeRepositoryFactoryBean"
 depends-on="authenticationProvider">
 <property name="repositoryConfiguration" value="${fcrepo.modeshape.configuration:repository.json}" />
</bean>

<bean name="fad" class="org.fcrepo.auth.roles.basic.BasicRolesAuthorizationDelegate"/>

<bean name="authenticationProvider" class="org.fcrepo.auth.common.ServletContainerAuthenticationProvider">
 <property name="fad" ref="fad"/>
</bean>

Edit your file to enable an authenticated internal session between Fedora and ModeShape, so that the security section matches the repository.json
example shown:

"security" : {
 "anonymous" : {
 "roles" : ["readonly","readwrite","admin"],
 "useOnFailedLogin" : false
 },
 "providers" : [
 { "classname" : "org.fcrepo.auth.common.ServletContainerAuthenticationProvider" }
]
},

XACML Authorization Delegate
This is an implementation of the . This PEP compiles request and environment information into an authorization request that is authorization delegate API
passed to a XACML policy decision point (PDP).

Requirements
How to Map to XACML Policies

Policy Persistence
Finding the Effective Policy Set
No Applicable Policies
Implementation

Local PDP
Cascading Deletes

https://wiki.lyrasis.org/display/FEDORA40/Access+Roles+Module
https://wiki.lyrasis.org/display/FEDORA40/Authorization+Delegates
https://wiki.lyrasis.org/display/FEDORA40/Design+Guide+-+Authorization+Delegates

1.
2.
3.
4.

XACML AuthZ Delegate
PolicyFinderModule (w/PolicyLocator for JBossPDP configuration)
ModeShapeResourceFinderModule
AttributeFinderModule(s)

ResourceAttributeFinderModule(s)
SubjectAttributeFinderModule
EnvironmentAttributeFinderModule

XACML Role-Based Access Control

Requirements
Authoring XACML policies is an involved technical process, with behavior hinging upon the total policy set. For this reason policies/sets will be
centralized, named and reused as much as possible. (Less is more)
Administrators may choose to enforce a different set of XACML policies at any point within the repository tree.
Metadata, such as ACLs or rights statements, can be used to avoid authoring more XACML.

Resource properties can determine the relevant policy within a set and the outcome from within that policy.
Policies may depend upon an access role attribute.
Policies may reference any value obtained via a SPARQL query, relative to the content resource, but the query must be mapped to a
XACML attribute in configuration.

Policies (and/or sets of them) must be stored in the repository.
Policies must be enforced on externally managed content, i.e. projected resources within a federated resource. (inc. filesystem connector)
Must be able to authorize based on requesting I.P. address
Must be able to authorize based on resource mixin types
Must be able to authorize based on Hydra rightsMetadata datastream
Must be able to authorize based on resource mimetype
Must be possible to use same rules as defined in policies in the following contexts (except for #1, we only need to demonstrate/document the
possibilities):

calls to Fedora REST-API
calls to Fedora Java classes
calls to external Solr index
calls to external triplestore

How to Map to XACML Policies
This includes how policies are stored in the repository and how they are linked with content resources.

Policy Persistence

Policy and Policy Set resources may be stored in any part of the repository tree at the discretion of the administrator.

Policies and Policy Sets are referenceable fcr:datastream resources that contain XACML XML.

Policy sets contain Fedora URI references to other policy sets and policies. Policy sets can define a tree structure of policies.

Policy URIs have the form . These URIs are the IDs of the Policies and PolicySets in the XACML datastream.info:fedora/path/to/PolicyResource

Finding the Effective Policy Set

One policy set in the workspace will be configured (in the XACML Policy Finder Module) as the default policy for the workspace. This is the same as saying
that this default policy set is effective at the root of the Fedora resource tree and everywhere else unless overridden.

Any fcr:resource may set a property which makes a strong reference to a single policy or set resource. This overrides the effective XACML policy policy
for itself and child resources. This action requires administrator levels of access, as determined by the effective policy, or by use of a login with the
fedoraAdmin role.

The Fedora Policy Finder implements the JBoss XACML PolicyFinderModule interface. It retrieves the policy or set that is effective for a given context
resource, and searches the tree for the closest parent with a policy property and returns that XACML. It also resolves internal URI references from policy
sets at the request of the PDP, looking in the workspace by policy URI.

Note: When combining XACML policies in sets, you specify a combining algorithm of either permit-override or deny-override. For this reason the policy
property is single-valued.

Here is an example repository tree:

ROOT
collection A

policy property --> policy A
collection B (inherits default policy set from ROOT)
policies

default policy set (XACML contains links to B and C)
policy set A (XACML contains links to default and D)
policy B
policy C
policy D

 collection X
policy set Z(XACML contains links to Y and W)
policy Y
policy W
My Documents

policy property --> policy set Z

No Applicable Policies

This situation can arise when the only policy set (or policy) for some content contains a element or any other XACML construct that restricts it's target
applicability to authz requests. If the PDP can find no policy that targets the request, it returns a NOT_APPLICABLE result to the XACML AuthZ Delegate.
The delegate will then return false to ModeShape, indicating that the action is not permitted.

Implementation

The delegate uses a JBoss XACML engine. PicketLink and PicketBox projects use the same XACML PDP, which is the Sun XACML implementation
repackaged by JBoss. (is a larger umbrella project of security services.)PicketLink

The JBoss XACML engine has no significant runtime dependencies, outside of a PicketLink utilities jar. The other dependencies are the Java Servlet API
and XML APIs.

Relevant APIs:

org.jboss.security.xacml.sunxacml.finder.PolicyFinderModule is used to find a policy (or policy set) that matches the request evaluation context.
Also used to lookup a policy that is referenced within a policy set by ID.
org.jboss.security.xacml.sunxacml.finder.AttributeFinderModule is used to find attribute values when evaluating a policy.
Constructing a policy set for the JBOSS engine:

see and JBossLDAPPolicyLocator as an example.JCR 2.0 16.3

Sun XACML Javadoc: http://sunxacml.sourceforge.net/javadoc/

Local PDP
Is this better implemented as a remote or a local PDP service. The PDP can be used as a bean without the webapp runtime, or it can be configured as a
separate service (SOAP). The trade-offs are identified in the table below.

Internal PDP (within ModeShape JVM) External PDP (remote XACML service)

Minimal administrative overhead through dependency injection,
etc..

Flexible, can be any XACML implementation

ModeShape cache will keep frequently used ACL metadata in
memory. Removes the need for any additional cache.

Decent performance may require custom metadata caches.

No network overhead making connections or marshaling data. Network latency, etc..

Decision and policy cache invalidation may be based on events. Cache invalidation requires wiring JCR or Fedora JMS specifics into the chosen
XACML service. Cache invalidation would be asynchronous.

Adds complexity to the runtime webapp – moving closer to a
monolithic, coupled application.

Cascading Deletes

When Modeshape checks for permission to remove a resource and the authz delegate returns true, there are no followup checks for removal of the child
resources. The children (and their children, etc) are deleted along with the parent, but the AuthZ Delegate gets no permission callback for them.

The JBoss/Sun PDP has a notion of scope for an evaluation that can be EvaluationCtx.SCOPE_IMMEDIATE, EvaluationCtx.SCOPE_CHILDREN or
EvaluationCtx.SCOPE_DESCENDANTS. If we are to use the scope feature, we need to implement another interface to retrieve children/descendants. This
interface is a org.jboss.security.xacml.sunxacml.finder.ResourceFinder. When descendants are in the evaluation scope, then each is evaluated in turn by
the PDP. The PDP traverses the descendants first, resolving applicable policies for each resource in turn. So this strategy should honor policy overrides
with the scope of a tree delete action.

XACML AuthZ Delegate

This is the implementation of the AuthZ Delegate interface. The delegate functions as a Policy Enforcement Point (PEP) in the XACML orchestration. The
delegate formulates requests for decisions and dispatch them to the JBossPDP. It interprets the results and return an appropriate response to the
hasPermission() method. Most of the work for this component is in building a request context for the PDP.

PolicyFinderModule (w/PolicyLocator for JBossPDP configuration)

http://www.picketlink.org/
http://www.day.com/specs/jcr/2.0/16_Access_Control_Management.html
http://sunxacml.sourceforge.net/javadoc/

1.
2.
3.
4.

Fedora will need an implementation of this interface, originally part of Sun XACML. This finder module will deliver the correct policy set for the resource ID
in a XACML request context according the rules for "Finding the Effective Policy Set" above. A similar kind of lookup, based on resource path, happens in
the access roles provider.

This is admittedly a little abstruse, but the policy finder module becomes part of the PDP via an implementation of the PolicyLocator interface. An
implementation must have a no argument constructor and received configuration via a setOptions() callback method. The PolicyLocator has a map where
it will store its PolicyFinderModule for use by the JBossPDP. A simple example is the JBossPolicyLocator, which puts a list of pre-configured policies into a
wrapper policy finder module. This wrapper policy finder module is added to the locator's internal map under the policy finder module key. To see how the
PDP builds the list of policy finder modules at initialization time, see JBossPDP.boostrapPDP(), especially the createPolicyFinderModules() method. There
you can see it build a list of finder modules from each configured policy locator.

The policy lookup operation involves the following steps:

finding the nearest real resource for a given the path, since access checks are sometimes performed on new resources before they are added.
Then you find the nearest parent with a policy property.
Then you read in and return the policy XACML. (There is a PolicyReader class you can use here)
It will also need to support requests for policies by resource URI, i.e. resolving policies that are linked from the first policy.

ModeShapeResourceFinderModule

Implements callback methods for finding child and descendant resources. This is used for delete and possibly move operations, which have cascading
effect on the resource tree.

AttributeFinderModule(s)

Attribute finder modules do not work the same as policy finder modules. The AttributeLocator is an implementation of the AttributeFinderModule interface.

ResourceAttributeFinderModule(s)

These finder modules retrieve information about the resource which is being accessed. They should be implemented as several finder modules for clarity.

A triple finder module resolves attribute IDs (URIs) to RDF properties on fedora resources. Attributes are not configured in advance. XACML authors may
reference any URI and if there is one or more triple with the correct subject resource and predicate, then the resource will be returned. It should match the
data type expected in XACML, which is also part of the arguments passed to the finder module.

A SPARQL finder module retrieves data indirectly linked to the subject resource. This finder module will resolve attributes via a configured map of attribute
IDs to SPARQL queries.

A common fedora finder module retrieves the standard attributes noted in the page.Fedora XACML Attributes

JBoss has an abstract class called StorageAttributeLocator which may be useful for formulating SPARQL queries that function much like prepared
statements against a DB, where there is a replacement value. That pattern may be useful for a ResourceAttributeFinderModule.

SubjectAttributeFinderModule

EnvironmentAttributeFinderModule

XACML Role-Based Access Control
Fedora implements the profile out-of-the-box. Under the profile, policies are divided into two types: and XACML 2.0 Role-Based Access Control Roles Per

. policies only define , then link to policies. Permission policies only define permission sets: that apply to missions Role Subjects Permission Rules Reso
 and . Policies are grouped into . Permission policy sets are never referenced directly, but only through Role policy sets.urces Actions PolicySets

This model makes it simple to assign multiple roles to intersecting sets of permissions, and to allow for hierarchical roles: more powerful roles can inherit
the permissions of lesser roles, then extend them in their own permission policy. Thus, an admin role inherits the permissions of both reader and writer
roles.

The Fedora default policies implement the roles , , and . See for a mapping of roles to admin writer reader Fedora Basic Roles - ModeShape Permission
ModeShape actions and permissions..

Fedora XACML RBAC policies on github

Some notes on identifier conventions:

PolicySetId identifiers will be URIs of the form . This identifier will be resolvable to the path to the info:fedora/policies/PolicyResource
policy resource in the repository.
Internal policy element identifiers for the XACML elements and will have the urn prefix PolicyId RuleId fcrepo-xacml.

Bypassing Authorization

https://wiki.lyrasis.org/display/FEDORA40/Fedora+XACML+Attributes
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
https://wiki.lyrasis.org/display/FEDORA40/Fedora+Basic+Roles+-+ModeShape+Permission
https://github.com/futures/fcrepo-module-auth-xacml/tree/master/src/main/resources/policies

1.

2.
3.
4.
5.

Running Fedora without authorization means that the REST API is available to any request coming from the container and lacks any finer-grained security.
This is useful when Fedora is running behind another application that connects to Fedora and implements its own security checks. In addition, this
configuration is useful for temporary demonstrations and for running software tests that do not require security.

This configuration does not preclude the use of container authentication to secure Fedora. However, container roles are not used for any further
authorization within Fedora. All requests are treated as superusers.

The security bypass for REST endpoint is accomplished by supplying an alternate ModeShape authentication provider for servlet credentials. This servlet
authentication provider permits all actions at the modeshape level and does not use a PEP (Policy Enforcement Point).

Step-by-Step:

If you previously configured a PEP, open your repo.xml file and remove any beans that are instances of "org.fcrepo.auth.common.
ServletContainerAuthenticationProvider".
Also remove the PEP bean, if one was configured.
Remove the depends-on attribute on the modeshapeRepofactory bean, if there is one.
Open your repository.json file
Under security, configure the "BypassSecurityServletAuthenticationProvider", as shown in the example below.

Example repository.json (security section)

"security" : {
 "anonymous" : {
 "roles" : ["readonly","readwrite","admin"],
 "useOnFailedLogin" : false
 },
 "providers" : [
 { "classname" : "org.fcrepo.auth.commons.BypassSecurityServletAuthenticationProvider" }
]

},

	Authentication and Authorization

