
University of York Use Case - Access Control
Controlling access to objects with relationships

Title (Goal) Controlling access to the repository with relationship driven access control

Primary Actor System, Administrators, Cataloguers

Scope  

Level  

Story (A paragraph 
or two describing 
what happens)

Each object is covered by licenses to capture the different permissions for that object. These licenses may be standard ones 
like Creative Commons or may need to be tailored for specific local requirements.

For example, for read access, we may have a license that says:

anyone can see the discovery metadata
only users with a specific role can download the jpeg version of the image

one that says

library staff can create, update and delete this

and another that says

administrators can CRUD everything

Licenses exist as objects in the repository, related to objects via a hasLicense relationship.

Access control policies (eg. XACML) are applied to objects indirectly via the license.

So:

object <hasLicense> license(s)

license <hasPolicy> policy(ies)

The relationship to the license is applied at the object creation stage, or through batch updates by administrators through a 
management interface.

In this way, if we need to change the wording of the license statement, we change only one object, or if we need to revise a 
policy to cover a different, new, datastream, we change only the policy. This also allows us to manage licenses in the 
repository rather than separately (and as now, on paper!).

This moves away from hierarchical access control, thereby allowing for flexible collection structures where objects may 
appear in multiple collections but are secured by their underlying license conditions and not by membership of a collection.

To deliver truly flexible and efficient access control we also have attribute look-up of parameters, for example to support:

module code (restrict read to members enrolled on a specified module of study, as identified by a module code assigned 
as a role to the logged in user by the authentication process)
username (restrict update to the creator)

Both of the above would mean a single policy for each, to support many thousands of individual policy cases.

 

Note: 

This is currently possible as of Fedora 3.5 and above. We have not yet migrated from Fedora 3.4 but are hoping to in 2014. Our main driver for this is to 
reduce the number of policies in use (less than 10 - 20 policies would probably cover our 100,000 objects rather than the 287 plus we currently have), 
simplify policy application, improve collection flexibility by removing the collection based application of policies and reduce duplication. The use case is not 
concerned with getting user roles, rather with how to apply access control to roles that are already defined in the system.


	University of York Use Case - Access Control

