
1.
2.

3.
a.
b.

4.
5.

a.

b.
c.

6.

7.

Yale University

Use case 1 - Fedora managing access conditions
Use case 2 - Programmers use API for access condition support in external systems, i.e. Hydra
Use case 3 - Applications use API for updating access conditions stored in Fedora

Use case 1 - Fedora managing access conditions

Title
(goal)

Fedora managing access conditions

Primary
Actor

Librarian/archivist/curator

Scope

Level User goal

Story The producer of Fedora content wants to be able to set access conditions that would allow for the following scenarios:

Content can only be accessed by a specific IP address or list of addresses
Data streams in the object can have different access conditions. i.e. TIF restricted to a single user, JPG open to the campus, PDF open
to the world.
Curator can set authorization in an external system which Fedora can access.

EZProxy
homegrown authorization systems

Curator can adjust access conditions per object or for thousands/millions of objects at a time
Curator can set restrictions on the application permitted to open an object. (focus on born digital for this)

example: Disk image created for a Mac SE, the curator indicates in the access condition the emulation environment required to
open the file.
note 1: I'm not expecting Fedora to enforce the restriction, only to store it.
note 2: I know emulation information can be stored in PREMIS, but information about the required emulation settings is different
from requiring a specific software title.

Curators can set multiple access schemas to an object or data stream in an object. This means a curator could say that a set of IP
addresses, an active directory group and a special group in our identity management software may access the materials.
Curators can set an access restriction flag for an external patron registration system or other complex authorization system such as
Aeon (Atlas Systems). In this case, we only need Fedora to know that the restriction exists. We would apply the code that reacts to this
requirement in Hydra or some other system which would cause the patron to go off and register/login to some patron tracking system
and when they meet the requirements, Hydra/Blacklight would release the objects that meet the requirement.

As for implementation, I can offer some examples of what we use now. We specify the file type/size, the authorization type and then any
values associated. Some examples:

TIF - Active Directory Group - ManuscriptCurators

TIF - Aeon

JPG 600px - IP - list of IP values or ranges

PDF - external authentication

JPG 1200px - Yale only

JPG 150px - open access

TIF - NetID - yale\mf438 (or a list of NetIDs)

DSK - Active Directory Group - ManuscriptDirectors

DSK - Emulation - AppleWin v1.1.8

Basically our need is for very granular levels of permission to be stored with the object in Fedora. Right now it is stored as XML as a data
stream, it would be beneficial to have it stored differently so that we could make mass changes to materials for entire collections.

Another note, we would only be storing a single JPG or possibly no JPG and only a JP2 and will derive the JPG on the fly. So the access
condition setup may include conditions for resolutions of digital formats not contained in the data streams. The JPG examples above would
indicate that a single JPG exists as a data stream and from that stream we will derive smaller images. But the access conditions are different
for ranges of sizes. For Yale, we stick to these sizes, 150px or less (thumb), 151-600px (medium), 600+ (full resolution). For TIF images we
use Full, Half page and Quarter page. Right now, all other sizes/resolutions are tied directly to the file type stored as a data stream. But being
able to reference access for something that is dynamically generated would make this scale to future needs.

Use case 2 - Programmers use API for access condition support in external
systems, i.e. Hydra

Title
(goal)

Programmers use API for access condition support in external systems, i.e. Hydra

Primary
Actor

IT/programming

Scope

Level User goal

Story A programmer can use an API in Fedora that will provide access conditions for a requested object.

In an ideal implementation I could make a request to Fedora with a PID and the data stream, the API would then return the requirements for
access. For example, a URL might look like and then returns something sort of JSON or XML that has all the http://fedora/PID/TIF/access
access information for the specific request. If the data stream type is not specified then all access information would be returned.

Since we also would like to contain information related to born digital/emulation environments, this output would also list the restrictions for
environments for accessing materials.

Use case 3 - Applications use API for updating access conditions stored in
Fedora

Title
(goal)

Applications use API for updating access conditions stored in Fedora

Primary
Actor

IT/programming

Scope

Level User goal

Story A programmer use the API to update/add access conditions to a PID, PID range or all PIDs in a namespace. This would essentially be API
access to do everything in the Use Case 1 above. Since no curators at Yale will have direct access to Fedora and all interaction will be
through a different software front end such as Archivematica or our homegrown solution Ladybird, we will need CRUD controls for Access
Conditions that can be handled from the other software products after ingest takes place.

Bulk updates are the most important part of this feature. Working with individual objects is time consuming and a wasteful operation. Ideally
this is implemented so that a single update to a PID takes about the same amount of time as updating 10,000 PIDs.

http://fedora/PID/TIF/access

	Yale University

