
a.
i.

b.
c.

1.
2.
3.

4.

1.

2.
3.

a.

b.
c.

Art Institute of Chicago Use Case - Structural Validation
Structural Validation

Title (Goal) Support Fedora 3-style object classes (content models) - Structural Validation

Primary Actor Repository architect & implementer

Scope Data architecture and access

Level High

Story (A paragraph or two
describing what happens)

As a repository manager,

I can define "content models" that ensure the presence of defined datastreams
A defined datastream has a defined name and a defined mime-type

I can define which type(s), name(s) and number of children or properties a Fedora node can have
Child nodes and properties introduced by a mix-in "content model" are removed when that mix-in is
un-assigned, if no other content models depend on them.

Examples

I have a asset type that is auto-assigned to assets ingested by Imaging department. myns:image
myns:image has mandatory properties and/or children such as a master datastream, of type or a subtype thereof.nt:file
myns:image assets can only have children of type. Ideally, that should be within a range of defined MIME types (not a critical feature nt:file nt:file
for now)
I need a validation mechanism that throws an error if an user adds or updates a child or property that doesn't conform to that definition.

Issues / limitations

The default primary type, , allows all Fedora nodes to have children of any type, with any name, in any number. There is no way to restrict nt:folder
that with Fedora's current tools.
The auto-assigned mixin type, , allows nodes to have properties of any type, with any name, in any number. Ditto as above. fedora:resource
If a mix-in is removed that defines some properties and/or child nodes, currently these properties/child nodes are not removed. It is not easy to
find which properties/child nodes were introduced by a content model, in order to "cleanly" remove it.

Bad solution: mirror the content model schema in the client systems that are adding/removing content models so they know which
properties/children can be removed along with the content model.
Better solution: expose content model schema via REST API methods (e.g. provide more details in /rest/fcr:nodetypes)
Another solution: provide a REST API method that automatically removes all properties/children before removing the content model (in
one transaction, so no mandatory constraints are violated).

Use case: AIC type hierarchy

att_D-AIC_JCR_classes.pdf

http://mynsimage
http://mynsimage
http://ntfile
http://mynsimage
http://ntfile
http://ntfile
http://ntfolder
http://fedoraresource
https://wiki.lyrasis.org/download/attachments/42795220/att_D-AIC_JCR_classes.pdf?version=1&modificationDate=1394739838691&api=v2

	Art Institute of Chicago Use Case - Structural Validation

