Multi-paged I ngest Forms

Multi-paged ingest forms are supported in Islandora 7. They allow the user to step though a
series of HTML forms which in turn manipulate one or more Fedora Objects; adding data-
streams, adding relationships, manipulating metadata. Once every form page has been
submitted, Islandora will automatically ingest all the prepared Fedora Objects.

Multi-paged ingest forms have a concept of "steps,” such that a steps are a sequentia list of
actions. Steps must be traversed to completion, at which point the prepared Fedora objects
will be ingested. There are currently two types of steps supported by the multi-paged ingest
forms:

Form steps. Expected to return anormal single paged Drupal Form.
Callback Steps: Expected to execute a single function and render nothing.

For every page request to the multi-paged ingest form, asingle form step is executed. Zero
or more callbacks steps may be executed for every page request. Since callback steps don't
render anything to the user they are executed consecutively in the order in which they

appear.

For example, we have the series of steps below:
callback 1, callback 2, form_1, callback 3, callback 4, form 2, callback 5

1. Beforeform 1, rendersto the user callback 1 and callback 2 will be executed.

2. When form_1 is submitted, callback 3, callback_4, wile be executed before
rendering form_2.

3. When form_2 is submitted, callback_5 will be executed,

4. Notethat al the steps have executed all the prepared Fedora Objects will be ingested.

Although optional, it's worth noting that typically form/callback steps are expected to also
define undo functions. These revert the changes they have been made to the prepared
objects. The undo functions are called when a user clicks on the previous button in the form
and returns to the previous form step.

To support this amodule need only declare what steps they wish to add and what functions
those steps perform.

Adding Steps

To let isandora know what steps you are providing you must implement the
islandora_ingest_steps hook(s):

function hook_i sl andora_i ngest_steps(array $formstate);

function hook_CMODEL_i sl andora_i ngest _steps(array $formstate);

Which can be implemented by modules to conditionally add new steps. These functions are
expected to return an associative array containing the appropriate steps to apply given the
current $form_state:

Each step should consist of a unique name mapped to an array of properties which take
different parameters based upon type:

Shared properties

type: Thetype of step. Either "form" or "callback".

module: A module from which we want to load an include file.

file: A filetoinclude (relative to the modul€'s path, including the file's extension).
weight: Steps are sorted by weight. The expected range between -50 to 50. The order
is undefined for steps which have the same weight.

Form properties
® form_id: The form building function to call to get the form structure for this step.
® args: Anarray of arguments to passto the form building function, These will be
appended after $form, and $form_state.

Callback properties

® do_function: An associate array including:
© function: The callback function to be called.
© args: Anarray of argumentsto passto the callback function.
® undo_function: An associate array including:
© function: The callback function to be called to reverse the executed action.
© args: Anarray of argumentsto passto the callback function.

Forms do not need to describe their undo. It's assumed to take the form of:

function form.id_undo_submt(array $form array &formstate);

Example implementation
/-k*
* | npl enents hook_i sl andora_i ngest _steps().
*/
function islandora_basic_i mage_i sl andora_sp_basi c_i mage_i sl andora_i ngest _steps() {
return array(
"islandora_basic_i mage' => array(
"weight' => 10,
"type' => 'forni,
‘form.id =>"'islandora_basic_inage_i mage_upl oad_forn,
"nmodul ' => 'islandora_basic_i nage',
‘file' =>"includes/imge_upload.forminc',

Altering Steps

Sometimes you will want to conditionally include/remove steps based on other steps. You
can do this viathe ater hook(s):

function hook_i sl andora_i ngest_steps_alter(array &steps, array $formstate);

function hook_CMODEL_i sl andora_i ngest _steps_alter(array &steps, array $formstate);

Example implementation

/**
* | npl enents hook_i sl andora_i ngest _steps_alter().
*/
function islandora_marcxm _i sl andora_i ngest_steps_al ter(array &steps, array
&$formstate) {
if (isset($steps[’'xm _formbuilder_netadata_step'])) {
$net adat a_st ep_storage = i sl andora_i ngest_form get_step_storage($formstate,
"xm _formbuil der _netadata_step');
if (isset($netadata_step_storage[' association']) &% $netadata_step_storage
["association']['dsid] =="MDS) {
$steps['islandora_marcxm _upload'] = array(
"type' => 'form,
"wei ght' => 1,
"formid =>"islandora_marcxm _file_form,
‘args' => array(),
"file' => 'includes/file.forminc',
"modul e => "islandora_marcxm ',

Persisting information

Asyou seen in the previous step, there are some functions

(idandora_ingest_form get_step storage) that help retrieve and persist information into the
form storage. This alows our steps to share information with one another, aswell as
manipulate the list of prepared Fedora Objects.

There are two levels of storage: per step storage and shar ed storage. Shared storageis first
populated with the configuration that was passed to islandora _ingest_form. Step storage
will often contain custom data related to that particular step, and any submitted values for
form steps:

function & sl andora_i ngest_form get _shared_storage(array &formstate);

function & sl andora_i ngest_form get_step_storage(array &pformstate, $step_id = NULL);

And two functions for grabbing the prepared objects, one for grabbing all the objects, and
one for grabbing the current object:

function & sl andora_i ngest_form get_objects(array &formstate);

function & sl andora_i ngest_form get_object(array &formstate);

Example implementation

function xm _formbuilder_islandora_i ngest_steps(array &formstate) {
nodul e_l oad_i nclude('inc', 'xm _formbuilder', 'includes/associations');
$shared_storage = islandora_ingest_form get_shared_storage($formstate);
$et adat a_st ep_storage = & sl andora_i ngest_form get _step_storage($formstate,
"xm _formbuil der_netadata_step');
$associ ati on_step_storage = & sl andora_i ngest_form get_step_storage($formstate,
"xm _formbuilder_association_step');
$associ ati on_step_storage[' nodel s'] = isset($associ ati on_step_storage[' nodels']) ?
$associ ation_step_storage[' nodel s'] : $shared_storage[' nodels'];
$associ ations = xm _form buil der_get _associ ations(array(), $associ ati on_step_storage
['nmodels'], array());
$net adat a_st ep_storage[' association'] = isset($netadata_step_storage['association'])
? $net adat a_step_storage[' association'] : current($associations);
$num associ ati ons = count ($associ ations);
$sel ect _associ ati on_step = ($num associ ations > 1) ? array(
"wei ght' => 0,
"type' => 'form,
"formid =>"'xml_formbuilder_sel ect_association_form,
"modul €' => "' xm _formbuilder',
"file' => "includes/select_association forminc',
"args' => array($associations),
) : NULL;
$net adat a_step = ($num associ ations >= 1) ? array(
"wei ght' => 5,
"type' => 'form,
"formid =>"'xnl _formbuilder_ingest_forni,
"modul €' => "' xm _formbuilder',
"file' => "includes/ingest.forminc',
"args' => array($netadata_step_storage['association']),
) : NULL;
return array(
"xm _formbuilder_association_step' => $sel ect_associ ati on_step,
"xm _formbuilder_netadata_step' => $netadata_step,

)

	Multi-paged Ingest Forms

