
1.  
2.  

a.  

b.  

3.  
a.  

b.  

c.  

4.  
a.  

b.  

c.  
5.  

6.  

Curation tasks in Jython
As mentioned in the "Scripted Tasks" chapter of  , you can write your curation tasks in several languages, including Jython (a flavour of Curation System
Python running on JVM).

Setting up scripted tasks in Jython

Download the latest Jython installer jar (e.g.  ) from jython-installer-2.5.3.jar http://www.jython.org/downloads.html
Get   and the  directory.jython.jar Lib

either unzip the installer jar:
unzip -d [dspace]/lib/ jython-installer-2.5.3.jar jython.jar Lib/
unzip -d  jython-installer-2.5.3.jar jython.jar Lib/[dspace]/webapps/xmlui/WEB-INF/lib/
or use it to install Jython: 
java -jar jython-installer-2.5.3.jar --console

Note: Installation location doesn't matter, this is not necessary for DSpace. You can safely delete it after you retrieve   and jython.jar L
.ib

Install Jython to DSpace classpaths (step 2a already did this for you):
The goal is to put   and the jython  directory into   DSpace classpath you intend to use, so it must be installed in jython.jar Lib/ every b

 and the webapp that deploys to Tomcat (if you want to run from the UI) - oth [dspace]/lib [dspace]/webapps/xmlui/WEB-INF
. There are no special maven/pom extensions - just copy in the jar and ./lib/ Lib/

You  use symlinks if you wish as long as allowLinking ( , ) is set to true in that context's configuration. However, can Tomcat <=7 Tomcat 8
be warned that .Tomcat documentation lists allowLinking="true" as a possible security concern
Note: Older versions of Jython mention the need for jython-engine.jar to implement JSR-223. Don't worry about that, new Jython 
versions, e.g. 2.5.3 don't require this.

Configure the curation framework to be aware of your new task(s):
set up the location of scripted tasks in the curation system. This means simply adding a property to [dspace]/config/modules

:/curate.cfg
script.dir=${dspace.dir}/ctscripts
in this directory, create a text file named " ". This is a Java properties file where lines beginning with '#' are task.catalog
comments. Add a line for each task you write. The syntax is following:

# logical task name = script engine name|file name|constructor invocation
mytask=python|mytask.py|MyTask()

Notes:

don't put spaces around the pipe character or you'll get an error similar to this one:
ERROR org.dspace.curate.TaskResolver @ Script engine: 'python ' is not installed
The "script engine name" is what ever name (or alias) jython registers in the JVM. You can use both "python" and "jython" as 
engine name (tested on jython 2.5.3). 
The logical task name can't conflict with existing (java) task names, but otherwise any single-word token can be used.
The file name is just the script file name in the   directoryscript.dir
"constructor invocation" is the language specific way to create an object that implements the task interface - it's ClassName() 
for Python

If you want pretty names in the UI, configure other curate.cfg properties - see " " (or groups etc)ui.tasknames
Write your task.
In the directory configured above, create your task (with the name configured in " ").task.catalog
The basic requirement of any scripted task is that it implements the  Java interface.ScriptedTask
So for our example, the  file might look like this:mytask.py

from org.dspace.curate import ScriptedTask

class MyTask(ScriptedTask):
        def init(self, curator, taskName):
                print "initializing with Jython"

        def performDso(self, dso):
                print "perform on dso"
                return 0

        def performId(self, context, id):
                print "perform on id %s" % (id)
                return 0

Invoke the task.
You can do this the same way you would invoke any task (from command line, in the admin UI, etc). The advantage of scripting is that you do not 
need to restart your servlet container to test changes; each task's source code is reloaded when you launch the task, so you can just put the 
updated script in place.
Example of invocation from command line:

https://wiki.lyrasis.org/display/DSDOC5x/Curation+System
http://search.maven.org/remotecontent?filepath=org/python/jython-installer/2.5.3/jython-installer-2.5.3.jar
http://www.jython.org/downloads.html
http://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Standard_Implementation
http://tomcat.apache.org/tomcat-8.0-doc/config/resources.html
https://tomcat.apache.org/tomcat-8.0-doc/security-howto.html#Context
https://github.com/DSpace/DSpace/blob/dspace-3_x/dspace-api/src/main/java/org/dspace/curate/ScriptedTask.java
https://github.com/DSpace/DSpace/blob/dspace-3_x/dspace-api/src/main/java/org/dspace/curate/ScriptedTask.java
https://github.com/DSpace/DSpace/blob/dspace-3_x/dspace-api/src/main/java/org/dspace/curate/ScriptedTask.java


6.  

[dspace]/bin/dspace curate -t mytask -i 123456789/123 -r -

Note: " " means that the script's standard output will be directed to the console. You can read more details in the "On the command line" -r -
chapter of the  page.Curation System

See also

Curation System page in the official documentation
Nailgun - for speeding up repeated runs of a dspace command from the command line
Note: since DSpace 4.0, there's a solution for running dspace CLI commands in batch: Executing streams of commands
Jython webapp for DSpace - general purpose (not curation task) webapp written in Jython, optionally with access to DSpace API

https://wiki.lyrasis.org/display/DSDOC5x/Curation+System
https://wiki.lyrasis.org/display/DSDOC5x/Curation+System
https://wiki.lyrasis.org/display/DSPACE/Nailgun
https://wiki.lyrasis.org/display/DSDOC4x/Executing+streams+of+commands
https://wiki.lyrasis.org/display/DSPACE/Jython+webapp+for+DSpace

	Curation tasks in Jython

