
1.
2.

The Developer Panel

Introduction
Terms

Developer Mode
Developer Settings
The Developer Panel

Entering Developer Mode
developer.properties file
Interactively entering developer mode

The settings
General settings
The "General" tab

Freemarker settings
SPARQL Query settings
Page configuration settings
Language support settings
Links

The "Search" tab
Search query settings
Search indexing settings
Links

The "Authorization" tab
What if the developer panel doesn't appear?

Diagnostic tools that can help you figure out what VIVO is doing.

Introduction
Are you developing code for VIVO? Are you doing some extreme customization? You might benefit from VIVO's set of built-in diagnostic tools.

These tools help to reveal how VIVO operates behind the scenes. In general, they are only used during development, because they may have serious
negative effects on the performance of the VIVO application. However, they may also be used (carefully) in production, to diagnose a particularly difficult
problem.

The diagnostic tools are enabled and controlled by settings within VIVO. These settings may be changed interactively, without restarting VIVO. The
settings may also be read from a file, so they will be in effect as VIVO is starting up.

Terms

Developer Mode

When the diagnostic tools are enabled, VIVO is said to be running in "Developer Mode". This reflects the fact that all of the developer settings are ignored
unless the tools as a whole are enabled.

Developer Settings

These are parameters that control the diagnostic tools. They may be set interactively, using the Developer Panel, or read from the developer.
 file at startup.properties

The Developer Panel

When VIVO is in developer mode, the Developer Panel appears on every page. This serves two purposes:

It enables you to change the Developer Settings without navigating away from your current page.
It provides a visual reminder that VIVO is in Developer Mode. If a production instance were accidentally configured to run in Developer Mode, it
would be easily noticed.

Entering Developer Mode

developer.properties file

When VIVO starts up, it looks for a file in the home directory, named . If the file is found, the settings are read from it. Any developer.properties
settings that are not found in the file keep their default values. If the file is not found, then all settings keep their default values until set interactively.

A typical developer.properties file

developer.enabled=true
developer.permitAnonymousControl=true
developer.defeatFreemarkerCache=true

This example causes:

Developer Mode is enabled immediately. The specified settings are in effect even while VIVO is starting.
Users who are not logged in can manipulate the developer settings. Obviously, this should only be permitted on a development system.
The Freemarker template cache is defeated. Each time a template is requested, it will be loaded from disk. This will cause VIVO to run more
slowly, but it means that a developer can see the effects of a template change immediately, instead of waiting for the template to expire and be
reloaded.

The VIVO distribution includes an file. It contains descriptions of all of the settings, with examples. You can rename example.developer.properties
 to , and uncomment the settings you want to use.example.developer.properties developer.properties

Interactively entering developer mode

Log in as a system administrator (or root). Go to the page. Click on .Site Administration Activate developer panel

The Developer Panel will immediately appear below the page header. You may click on the panel to open it and change the settings. The Developer Panel
will continue to appear in every page (except for some "back-end" pages for editing the ontology).

The settings
The developer panel has two general settings, and three tabs of additional settings. The following tables show the meaning of each setting in the
developer panel, and how to specify it in the file.developer.properties

General settings

These appear at the top of the panel, regardless of which tab is selected.

In the
panel

Enable developer mode

In the
file

developer.enabled

Effect Causes the developer panel to be displayed on each VIVO page. Enables all of the other developer settings. If this is , other settings false
will retain their values, but will not take effect.

In the panel Allow anonymous user to see and modify developer settings

In the file developer.permitAnonymousControl

Effect If , any VIVO user may change the developer settings. If , only a system administrator (or root) may change the settings.true false

The "General" tab

Freemarker settings

In the
panel

Defeat the template cache

In the file developer.defeatFreemarkerCache

Effect If , each Freemarker template is loaded from disk each time it is used. If , a template change may be on disk for up to one true false
minute before it is loaded.

In the
panel

Insert HTML comments and start and end of templates

In the file developer.insertFreemarkerDelimiters

Effect If , you may view the HTML source for a VIVO page to see which Freemarker templates were used to create each portion of the true
page. For example:

...
<!-- FM_BEGIN view-search-default.ftl -->
Oswald, Jeremiah
 Faculty Member
<p class="snippet"></p><!-- FM_END view-search-default.ftl -->
...

SPARQL Query settings

Full documentation for the logging RDF Service is available here, including detailed explanation of an example log excerpt.

In
the
panel

LOG each query

In
the
file

developer.loggingRDFService.enable

Effect Write an entry to the log for each SPARQL query, assuming that -level logging is enabled for the . Each entry INFO RDFServiceLogger
includes

The time spent executing the query
The name of the method on that received the queryRDFService
The format of the result stream from RDFService
The text of the query.

The remaining settings in this area can be used to restrict which queries are logged, or to include more information for each query.

The configuration models (display, user accounts) and the TBox models are memory-mapped. This means that any "read" operations are run
against a cached copy of the model, and are not logged. For these models, only "write" operations are logged.

The ABox models are not memory-mapped; both "read" and "write" operations will be logged.

In the
panel

Show stack trace

In the
file

developer.loggingRDFService.stackTrace

Effect Each log entry will include a stack trace. The trace is abridged so it starts after the , omits any Jena classes, ApplicationFilterChain
and ends at the .RDFService

In the panel Restrict by query string

In the file developer.loggingRDFService.queryRestriction

Effect Set this to a regular expression. A query will be logged only if the text of the query matches the regular expression, in whole or in part.

In the
panel

Restrict by calling stack

In the file developer.loggingRDFService.stackRestriction

Effect Set this to a regular expression. A query will be logged only if the abridged calling stack matches the regular expression, in whole or in
part.

Page configuration settings

In the panel Log the use of custom list view XML files.

In the file developer.pageContents.logCustomListView

https://wiki.lyrasis.org/display/VIVO/The+logging+RDF+Service

Effect Write an entry to the log each time a property is displayed using a list view other than the default lists view.

In the panel Log the use of custom short views in search, index and browse pages.

In the file developer.pageContents.logCustomShortView

Effect Write an entry to the log each time a search result is displayed using a short view other than the default view for that context.

Language support settings

In the
panel

Defeat the cache of language property files

In the file developer.i18n.defeatCache

Effect If , the language property files are re-loaded each time they are called for. If , the language property files are loaded only true false
once, when VIVO starts up.

In the panel Log the retrieval of language strings

In the file developer.i18n.logStringRequests.

Effect Write an entry to the log each time a language-specific string is retrieved from one of the language property files.

Links

The "General" tab also contains these links to special VIVO pages.

Link
text

Set log levels

URL /admin/log4j.jsp

The
page

Displays the logging levels of every Java class in VIVO, providing that it has an active . You must be logged in as a system administrator Log
(or root) to use this page. Find the class you are interested in, set the logging level, then scroll to the bottom of the page to Submit changes

.to logging levels

Link text Show Configuration

URL /admin/showConfiguration

The
page

Displays a list of the and . Displays a list of the System properties in the Java virtual build.properties runtime.properties
machine.

Link
text

Show authorization info

URL /admin/showAuth

The
page

Displays information about the user who is currently logged in, the identifiers associated with that user, and the permissions they have been
granted. Display information about the configured objects, and related objects.Policy

Link
text

Show background threads

URL /admin/showThreads

The
page

Displays information about the active background threads. These threads may be rebuilding the search index, re-inferencing the knowledge
base, or rebuilding the Class Cache.

Link
text

Show RDF data sources

URL /admin/showSources

The
page

Displays information about the triple stores, and the layers of adapters that the application wraps around them, including ModelMakers,
OntModels, etc.

The "Search" tab

Search query settings

In the
panel

Log searches

In the file developer.searchEngine.enable

Effect Write an entry to the log for each Search query, assuming that -level logging is enabled for the . Each INFO SearchEngineLogger
entry includes

The time spent executing the query
The search query, including the query text, start row, row limits, search fields, return fields, facet fields, and filters.
The number of results returned.

The remaining settings in this area can be used to restrict which queries are logged, or to include more information for each query.

In the
panel

Show stack trace

In the file developer.searchEngine.addStackTrace

Effect Each log entry will include a stack trace. The trace is abridged so it starts after the and ends at the ApplicationFilterChain Search
.EngineWrapper

In the panel Show search results

In the file developer.searchEngine.addResults

Effect Each log entry will include the search records that were returned from the query, as well as any facet fields.

In the panel Restrict by query string

In the file developer.searchEngine.queryRestriction

Effect Set this to a regular expression. A query will be logged only if the text of the query matches the regular expression, in whole or in part.

In the
panel

Restrict by calling stack

In the file developer.searchEngine.stackRestriction

Effect Set this to a regular expression. A query will be logged only if the abridged calling stack matches the regular expression, in whole or in
part.

Search indexing settings

In
the
panel

Log indexing

In
the
file

developer.searchIndex.enable

Effect Write an entry to the log each time that documents are added to the Search index, assuming that -level logging is enabled for the INFO Searc
. Note that documents are not changed in the Search index: instead, old documents are deleted and new documents are hEngineLogger

added. Each entry includes

The time taken to add the documents.
The number of documents added.
The URIs of the individuals being indexed in the documents.

The remaining settings in this area can be used to restrict which queries are logged, or to include more information for each query.

In the
panel

 Show document contents

In the
file

developer.searchIndex.showDocuments

Effect Each entry will include the contents of the documents being added. This includes the document identifiers, the boost level, and the
contents of each of the fields in the document.

In the
panel

 Restrict by URI or name

In the
file

developer.searchIndex.uriOrNameRestriction

Effect Set this to a regular expression. An addition will be logged only if the list of document identifiers matches the regular expression, in whole or
in part. The document identifiers are the and the fields.URI Name

In the
panel

 Restrict by document contents

In the file developer.searchIndex.documentRestriction

Effect Set this to a regular expression. An addition will be logged only if the contents of the documents matches the regular expression, in
whole or in part.

In the
panel

 Log breakdown timings for indexing operations

In the
file

developer.searchIndex.logIndexingBreakdownTimings

Effect When an indexing operation completed, write entries to the log showing how much time was taken by each indexing object: Excluders,
DocumentModifiers, and UriFinders. Each entry includes

The display label of the indexing object
The number of times that the indexing object was invoked
The total time required for the indexing object
The average time for each invocation of the indexing object

In the
panel

 Log deletions

In the
file

developer.searchDeletions.enable

Effect Write an entry to the log each time documents are deleted from the Search index, assuming that -level logging is enabled for the INFO Sear
. Each entry includeschEngineLogger

The time spent deleting the documents
Either

the list of s being deleted, orURI
the search query that was used to find documents for deletion.

In
the
panel

 Suppress the automatic indexing of changed triples.

In
the
file

developer.searchIndex.suppressModelChangeListener

Effect If this is selected, the search indexer will not automatically adjust to changes in the data model. This means that you can ingest data much
more quickly, but you must manually request a full re-indexing when your ingests are complete.

This doesn't really belong in the developer panel, since it changes the way VIVO operates. It was put here to answer an urgent requirement.

Links

Link text Rebuild search index

URL /SearchIndex

The page Allows you to request a rebuild of the search index, and to monitor its progress.

The "Authorization" tab

In the
panel

Write policy decisions to the log

In the
file

developer.authorization.logDecisions.enable

Effect Write an entry to the log for each policy decision that is made for any requested action, assuming that -level logging is enabled for the INFO
. Each entry includesPolicyDecisionLogger

The requested action
The name of the policy
The decision and message.

The remaining settings in this area can be used to restrict which queries are decisions are logged, or to include more information for each
decision.

In the panel Include the user identifiers in the log record

In the file developer.authorization.logDecisions.addIdentifiers

Effect Each log entry will include the identifiers assigned to the currently logged-in user.

In the
panel

 Skip inconclusive decisions

In the file developer.authorization.logDecisions.skipInconclusive

Effect Do not log decisions. If all policies return for a request, this is treated as , and will be INCONCLUSIVE INCONCLUSIVE UNAUTHORIZED
logged.

In the
panel

 Restrict by requested action

In the file developer.authorization.logDecisions.actionRestriction

Effect Set this to a regular expression. A decision will be logged only if the string value of the requested action matches the regular expression,
in whole or in part.

In the
panel

 Restrict by policy name

In the file developer.authorization.logDecisions.policyRestriction

Effect Set this to a regular expression. A decision will be logged only if the string value of the policy matches the regular expression, in whole
or in part.

In the
panel

 Restrict by user identifiers

In the file developer.authorization.logDecisions.userRestriction

Effect Set this to a regular expression. A decision will be logged only if the list of user identifiers matches the regular expression, in whole or in
part.

What if the developer panel doesn't appear?
If you are using a custom theme, and you created it from a VIVO release prior to 1.6, it's likely that your theme doesn't display the developer panel.

Confirm that the template contains an directive like this one:[vivo]/webapp/themes/[your_theme]/templates/menu.ftl include

Excerpt from menu.ftl

<#-- $This file is distributed under the terms of the license in /doc/license.txt$ -->

</header>

<#include "developer.ftl">

<nav role="navigation">

...

	The Developer Panel

