
1.  

a.  
b.  

c.  
2.  

a.  
b.  

i.  
ii.  
iii.  

c.  

d.  
e.  
f.  

3.  
a.  
b.  
c.  

4.  
a.  

i.  
5.  

a.  
b.  
c.  
d.  
e.  

f.  
g.  
h.  

6.  
a.  

i.  

ii.  

iii.  

Technical Working Group

Technical Working Group
Ben Armintor - Columbia University
Chris Beer - Stanford University
Esme Cowles - University of California, San Diego
Dan Davis - Smithsonian Institute
Declan Fleming - University of California San Diego
Neil Jefferies - Oxford University
Adam Soroka - University of Virginia
Andrew Woods - DuraSpace - Technical Team Lead
Zhiwu Xie - Virginia Tech

The working group's .charter

Initial Objective
Given the areas of assessment enumerated below, the Technical Working Group has decided to prioritize and select the top four areas for initial review. 
The plans for the each of these four areas and their assessment outcomes can be found:

F4 Assessment - Pre-Production

Areas of assessment
REST API

Are immediate updates required?
We should version the API independently

This offers multiple backend implementations/optimizations
A. Soroka: I think this requires a stronger definition of the API than currently exists in the form of user documentation. I suggest 
defining the API as ontology extensions to LDP.
Clarifying and  (formally and informally) the relationship between the Fedora API and LDP.publicizing

Performance
Read
Writes

Many small files
Large files
High throughput

Scalable serialization to disk
Need to measure scale of load that async serialization can meet
Need to clarify async approaches: messaging and sequencers

Replication of objects to another repository instance
Full re-indexing
Full integrity checks

Multi-node / Clustered configurations /  CapableFederation
High availability
Bulk ingest
High read loads
Note: generally need to define what clustering provides (DWD - I suggest that a cluster acts like a single installation in which system 
state is closely shared among the members. Clusters usually imply a common implementation)
Federation - (nodes have a common definition for identifiers, interfaces, formats, protocol, business semantics, and policies that permit 
them to interoperate but otherwise act like independent installations that do not closely share system state.  Federation does not need to 
be a common implementation but implies common governance)

ModeShape
Assess persistence approach (i.e. bit-level object and datastream persistence)

Some backup/restore details: Backup and Restore
Evolution-capability - The system permits graceful (incremental) changes without having to perform replacement of large parts of the system in 
one step

The software permits the graceful replacement of old technology with new technology
The software permits the integration of new technology gracefully
New content formats can be added easily, and the system permits gracefully delivering new representations for existing content
New capabilities can be added or old ones replaced gracefully
Underlying hardware and software infrastructures can be replaced gracefully, and the system can use advances in technology or special 
characteristics of its technical infrastructure without changing the core Fedora software
How does the content move forward in time?
How do the interface contracts move forward in time?
How does the implementation move forward in time?

Ability to use in various integration patterns
Inbound and outbound transformation

Permits ingested information to be transformed so it matches the supported ingest contracts, and the same in reverse for 
delivery
Also used internally to support interoperation with back-end integrations particularly storage (for example S3, DuraCloud)

https://wiki.lyrasis.org/display/FF/Technical+Working+Group+Charter
https://wiki.lyrasis.org/display/FF/F4+Assessment+-+Pre-Production
https://wiki.lyrasis.org/display/~ajs6f@virginia.edu
https://www.w3.org/wiki/index.php?title=LDP_Implementations&diff=prev&oldid=76394
https://wiki.lyrasis.org/display/FEDORA40/Backup+and+Restore


6.  
a.  

iii.  
b.  

i.  
ii.  
iii.  

c.  
i.  
ii.  

d.  
e.  

7.  
a.  

i.  
ii.  
iii.  

b.  
i.  
ii.  
iii.  

c.  
i.  
ii.  

8.  
a.  

b.  
c.  

i.  
d.  

i.  

ii.  
iii.  

e.  
f.  
g.  
h.  

i.  

i.  
j.  
k.  

9.  
a.  
b.  
c.  
d.  

Overlaps the Content Enrichment pattern for feature extraction, for example loading Search and Discovery indices
Content Enrichment pattern for ingest at least

For example, extra meta-information can be added to newly ingested content
Another example is extraction of meta-information from inside the ingested content
A third example, is connecting content or meta-information to other related items

Internal and external event driven (notification) patterns (especially external notification that an asynchronous operation is complete)
Internal event driven operation is likely to be well set up
A classic external case is a front-end system needs to know when all internal operations or delegated operations are finished so 
the front-end system can behave is a post ingest fashion.  For example, update its indexes, removed staged content, possibly 
remove original content.  The alternative is a polling approach (both could be used).

Idempotent receiver pattern - Identical ingests could be received but it should be possible to ignore duplicates
Message Bridge pattern - Permits inbound messages (all RESTful HTTP API calls are messages) to signal back-end integrations, 
possibly outside the repository to perform functions

Storage Options
Tiered-storage

Support having all or part of the content low performance storage including copies in near-offline storage
Support having all or part of the content on offline storage (like tape - where items are not available until after staging)
Support having meta information stored in offline or near offline

Support storage other than file systems and using that storage's special features
Bytestream-based object stores like S3, DuraCloud or Isilon
Streaming stores for low latency, low dropout functions such as audio and video delivery
Tape

Support having specialized indices particularly for locating copies, metadata or discovery data, also removal of latency
Direct queries to appropriate an appropriate index
Marshall results from multiple indices

Preservation-worthiness 
These comments are based on the assumption that the only form we currently know how to preserve is a serialized form, also some 
features overlap, If this is not true propose an alternative
Permit copies to be made, maintained and validated at one or more geographically remote locations
All archivally significant data is, at some point, stored in a serialized form

A. Soroka: What is "archivally significant data"?
No notification that results in the destruction of the original source materials is issue until all steps of the preservation policy are executed 
and verified ( : This is as much to say that Fedora's performance will always be terrible.)A. Soroka

e.g. content progresses from a (possibly) non-serialized form, to a serialized from and n copies are made, followed by a check 
of essential characteristics
There is some definition of the essential characteristics of the representations that can be delivered for the unit of preservation
There is some definition of the unit of preservation

Bitstream level fixity of "preserved" representations can be verified
Fixity of meta information can be verified
Some approach to authenticity is selected and used including at least lifecycle records (one kind of audit record)
Records of system operations including configuration changes are kept (a second kind of audit record)

A. Soroka: This is not feasible in the current implementation and making it feasible would require bringing configuration into the 
repository, a massively-non-trivial task.

Repeated from Evolution above since the subjects overlap: How does the content move forward in time?
How do the interface contracts move forward in time?
How does the implementation move forward in time?

Support for graphs of related stuff (carefully avoiding saying what kind of stuff yet)
Linked data
Semantic databases
Specific representations
Named graphs

Meetings
2014-08-13 - Fedora Technical WG Meeting
2014-08-20 - Fedora Technical WG Meeting
2014-08-27 - Fedora Technical WG Meeting
2014-09-03 - Fedora Technical WG Meeting
2014-09-10 - Fedora Technical WG Meeting
2014-09-17 - Fedora Technical WG Meeting
2014-09-24 - Fedora Technical WG Meeting
2014-10-08 - Fedora Technical WG Meeting
2014-10-15 - Fedora Technical WG Meeting
2014-10-29 - Fedora Technical WG Meeting

 

https://wiki.lyrasis.org/display/~ajs6f@virginia.edu
https://wiki.lyrasis.org/display/~ajs6f@virginia.edu
https://wiki.lyrasis.org/display/~ajs6f@virginia.edu
https://wiki.lyrasis.org/display/FF/2014-08-13+-+Fedora+Technical+WG+Meeting
https://wiki.lyrasis.org/display/FF/2014-08-20+-+Fedora+Technical+WG+Meeting
https://wiki.lyrasis.org/display/FF/2014-08-27+-+Fedora+Technical+WG+Meeting
https://wiki.lyrasis.org/display/FF/2014-09-03+-+Fedora+Technical+WG+Meeting
https://wiki.lyrasis.org/display/FF/2014-09-10+-+Fedora+Technical+WG+Meeting
https://wiki.lyrasis.org/display/FF/2014-09-17+-+Fedora+Technical+WG+Meeting
https://wiki.lyrasis.org/display/FF/2014-09-24+-+Fedora+Technical+WG+Meeting
https://wiki.lyrasis.org/display/FF/2014-10-08+-+Fedora+Technical+Working+Group
https://wiki.lyrasis.org/display/FF/2014-10-15+-+Fedora+Technical+Working+Group
https://wiki.lyrasis.org/display/FF/2014-10-29+-+Fedora+Technical+Working+Group

	Technical Working Group

