
Assessment Plan - Performance

Performance Testing Scenarios
Definitions

Usage Categories
Authoring
Simple Ingest
Bulk Ingest
Simple Access
Conditioned Access
Mediated Access
Bulk Access

Tests
Baseline and Simple Concurrency Testing Matrix
Concurrency Tests

Testing Tools and Configuration
Testing Considerations
Fedora Configurations
Resources

Performance Testing Scenarios
Performance testing may be simplest if real-world scenarios are used that are drawn from the use patterns for Fedora 4. In other words, performance
testing should be informed by the expected way Fedora will be used. No single software product can perform well for every possible use (a.k.a pattern of
use). We need to define the expected uses for Fedora, and acknowledge the trade-offs that are being made. While we need to recognize that there will
be unanticipated uses, we can only test for the cases that best characterize how we expect Fedora to be used. This sets expectations for those building
systems using Fedora and guidance for Fedora committers. When there is a use is identified during system design, developers can decide if Fedora is
suitable as a part of their implementation. Fedora committers can decide either Fedora can be extended to support that use or suggest how Fedora can be
used in combination with other tools to support that use.

The scenarios are broken into major categories of use that give us examples of how Fedora is used to aid in constructing a realistic performance test suite.
These are intended to be pragmatic categories since they present different loads on the system and should not be mechanically linked one-to-one with any
API.

Definitions

Use - Canonical action in a use case from the user's view
User Operation - Users view of a logical, single operation
Repository Operation - Repositories view of a logical, single operation for our purposes as the result of one or more API calls
Performance - The number of units of work that are accomplished during an operation
Concurrency - The number and kinds of operations being performed at the same nominal time (as opposed to a single repetition of an operation)
Measurement - Metrics (to be defined) that are appropriate for measuring the results of a performance test of the Fedora Repository.

There may be more than one metric
Working ideas:

The amount in bytes of content and metadata for an operation, or per unit of time
The number of operations per unit of time
The time between when an operation is started and when it is completed
Count of operations performed possible eliminating content transfer time (normalized)

To Be Done

Are these a good list of usage categories?
Validate/Add user operations for each category (to the likely limits we can do). Prioritize short term goals. - This tells us how we expect Fedora 4
is to be used.
Add user operations to tests
Add repository operations to test
Choose performance units for each test
Choose performance expectations for each test
Describe the test
Construct concurrency goals for each test - Note: single thread tests will be use as a baseline as informed by Single Node tests
Write a test script (for each test)
Describe the Fedora 4 configuration
Set up a test infrastructure using The Grinder
Prepare data
Test

http://2014-08-20 - Performance Summary

Usage Categories
The following categories and uses are drawn from the and any new items especially expectations that have surfaced during Fedora 4 Roadmap
development. Only performance related uses are included, specific function details are dropped for simplicity and that they are likely not need specific
performance testing.

Authoring

Authoring is the activity of creating or assembling new content. This includes both constructing wholly new content and referencing existing content. It is
different from ingest in that is characterized by incremental assembly of the content which many rapid write/read cycles to accomplish what the user
considers a single operation. It is often performed as part of some sort of authoring workflow commonly with multiple actors performing both overlapping
and different roles. During this phase the content (and metadata) is rapidly changing. The time between operations in a workflow can vary considerably
so Authoring needs to handle the shortest period between user operations.

Simple Ingest

Simple Ingest consist of upload of single or small amounts of content and metadata. It can be accomplished with a single atomic operation or a short
series of operations, usually RESTful, without required intermediate reads prior to completion. The duration of the small ingest is expected to be
approximately the time it takes to upload the content and metadata starting with the beginning of the connection, where the connection is terminated after
the operation. It is expected that the ability to read (access) the uploaded content and metadata should happen fairly soon after the upload is complete.

Bulk Ingest

In bulk ingest, a large quantity of content and metadata is ingested as a logical unit or is continuous. This may be accomplished using number of
repository operations or may utilize methods that are optimized for bulk ingest. It is characterized by the expectation that there may be a defined delay
between when the ingest is started and part or all of the content and metadata becomes available for read.

Simple Access

Simple access (a.k.a simple read or download) is the download of content and metadata (a.k.a representation of a resource) as a single user operation
and one or a small number of repository operations. It usually RESTful, and usually contained a single request. Simple Access must not require any
concurrent writes to accomplish the single user operation. The content and metadata stays fixed from the beginning to the end of the access.

Conditioned Access

When streaming media, dropouts present a significant problem. The user expects to be able to access the contents without interruption. This may require
a front end tool for buffering so the stream need not be perfect but good enough for the buffering tool.

Mediated Access

Not all of the content is managed by Fedora but some resources are is provided by reference from a remote web service. Fedora would retrieve the
representation (content and metadata) from the web service and present it as if it was a resource in Fedora.

Bulk Access

Download of large amount of content as single user operation. This may require any number of repository operations to accomplish. Whether content and
metadata stays fixed from the beginning to the end of the operation is to be defined. This is needs consideration a whole intellectual entity, graph or DIP is
considered the unit. Also we need to consider what this means for continuous access operations.

Tests

Baseline and Simple Concurrency Testing Matrix

The tests in the table will start with a single load injector and worker to use as a baseline. Then each of the tests are executed to test concurrency with
increasing numbers of load injectors and workers until performance declines and/or error rates become large.

Category User
Operation

Repository
Operation

Test
Metric

Test Priority Notes

Simple
Ingest

Small Files Rate 1 Increase Load Injectors until max rate is found. Synthetic data is acceptable for this
test

Simple
Ingest

Medium Files Rate 1 Synthetic data is acceptable for this Increase Load Injectors until max rate is found.
test

https://wiki.lyrasis.org/display/FF/Roadmap

Simple
Ingest

Large Files Rate 1+ Synthetic data is acceptable for this Increase Load Injectors until max rate is found.
test

Simple
Ingest

Media Files

Simple
Ingest

Large File
Count

 Rate -
Normaliz
ed

Count

 1+ Ingest files to a substantial number to explore maximum file count. Normalized to
ignore size of a given file.

Bulk Ingest Small Files

Bulk Ingest Medium Files

Bulk Ingest Large Files

Bulk Ingest Large File
Count

 Rate -
Normaliz
ed

Count

 Ingest files to a substantial number to explore maximum file count

Simple
Access

Small Files Random
Access

 1 Increase Load Injectors until max rate is found. Site should contain a set of files of
uniform size. Tests can vary download mix by URL. It is essential that caching be
avoided. Synthetic data is acceptable for this test.

Simple
Access

Medium Files Random
Access

 1 Site should contain a set of files of Increase Load Injectors until max rate is found.
uniform size. Tests can vary download mix by URL. It is essential that caching be
avoided. Synthetic data is acceptable for this test.

Simple
Access

Large Files Random
Access

 1 Site should contain a set of files of Increase Load Injectors until max rate is found.
uniform size. Tests can vary download mix by URL. It is essential that caching be
avoided. Synthetic data is acceptable for this test.

Simple
Access

Mixed Files Random
Access

 1+ Site should contain a set of files of all Increase Load Injectors until max rate is found.
three sizes. Tests can vary download mix by URL. It is essential that caching be
avoided. Synthetic data is acceptable for this test.

Simple
Access

Large File
Count

 Random
Access

 1 Increase Load Injectors until max rate is found. Access a large number of files until
time is exhausted.

Bulk Ingest Small Files

Bulk Ingest Medium Files

Bulk Ingest Large Files

Bulk Ingest Mixed Files

Concurrency Tests

The tests in the table combine two or more different tests from the table above. It starts with concurrent operation of at least two workers, one for each
simple test. Then each of the tests are executed with increasing numbers of load injectors and workers until performance declines and/or error rates
become large.

Category User Operation Repository Operation Test Metric Test Priority Notes

Concurrent Test #1 Simple Access Mixed Files

Simple Ingest Mixed Files

 Rate

Random Access

 1+ Number of Load Injectors TBD

Number of Load Injectors TBD

Concurrent Test #N Authoring Simulation Rate

Directed Access

Testing Tools and Configuration
The suggested testing tool is . It is a load testing framework written in Java, that uses Java, Jython and/or Clojure for writing the tests. A more The Grinder
complete discussion of our testing infrastructure may be found on this .page

Testing Considerations
These scenarios expand on the previous single load injector tests to use multiple read, write, and read-write tests via the REST api.

http://grinder.sourceforge.net
https://wiki.lyrasis.org/display/FF/Fedora+4+Concurrency+Test+Configuration

Note: all tests need to be taken until:

a steady state is achieved
a declining state is achieved
Fedora 4 exhibits high error rates or stops responding

Load Injectors

1 Load Injector to provide a baseline similar to the previous testing regimen
3 Load Injectors
6 Load Injectors (since this is where Fedora 3 starts to exhibit limits)
12 Load Injectors (since this is where Fedora 3 always exhibits limits)
24 Load Injectors

Payloads

100K file (Minimal File, Also used in the single node baseline tests)
2.5 M file (Avg Hi-Res Image)
50M file (Avg Video, Also used in the single node baseline tests)
2.6G file (DVD)

Rates

Step up rates X2 until flat line
Then proceed to declining response, high error rates or non-response

Note: Single node test indicated a sensitivity to have large numbers of items as children of a single node. How should we deal with this?

Fedora Configurations
Not Transactional
Transactional
Not Clustered
Clustered
Not Replicated
Replicated

Resources
https://github.com/pinterest/bender/blob/master/http/TUTORIAL.md
https://github.com/fcrepo4-labs/fcrepo-test-grinder
http://grinder.sourceforge.net/index.html

https://github.com/pinterest/bender/blob/master/http/TUTORIAL.md
https://github.com/fcrepo4-labs/fcrepo-test-grinder
http://grinder.sourceforge.net/index.html

	Assessment Plan - Performance

