
ORE Ontology GEM Implementation

Table of Contents

Overview
Ontologies

ORE Triples Examples
Data Structure Approaches

Limit testing for array in-memory data structure
Analysis:
Alternate Approaches:

Use Cases:
Use Case: Fetch the first N items in the list and display to user; Fetch next N and display; Fetch prev N and display; Fetch page
X and display
Use Case: Add additional information to ListItemInfo before display
Use Case: Move position of an item in the list
Use Case: Add (append) item to end of list
Use Case: Sort list items by value not stored in list.

List Header Info Structure
List Item Info Structure

Overview

This page explores design issues for an efficient ORE ontology gem implementation based off the framework.ActiveTriples

Ontologies

The following is a list of all ontologies used by the Triple Examples.

Ontology
Name

Prefix URL Details Comments

RDF rdf http://www.w3.org/1999/02/22-rdf-
syntax-ns#

specification

RDF Schema rdfs http://www.w3.org/2000/01/rdf-schema# specification

Dublin Core dc http://purl.org/dc/elements/1.1/ specification

ORE ore http://www.openarchives.org/ore/terms/ specification Represents both ordered and unordered items using the
Aggregation class.

IANA iana http://www.iana.org/assignments
/relation/

specification ORE uses this ontology for first, last, next, and prev predicates.

Friend of a Friend foaf http://xmlns.com/foaf/0.1 specification Uses gem.ld4l-foaf_rdf

ORE Triples Examples

https://github.com/ActiveTriples/ActiveTriples
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-schema/
http://dublincore.org/documents/dces/
http://www.openarchives.org/ore/1.0/vocabulary#otherRelationships
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://xmlns.com/foaf/spec/
https://github.com/ld4l/foaf_rdf

Turtle using ORE ontology's Aggregation class

@prefix ore: <http://www.openarchives.org/ore/terms/> .
@prefix iana: <http://www.iana.org/assignments/relation/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://localhost:3000/individual/vc155> a ore:Aggregation ;
 ore:aggregates <http://da-rdf.library.cornell.edu/individual/b3652730> ;
 ore:aggregates <http://da-rdf.library.cornell.edu/individual/b3652234> ;
 ore:aggregates <http://da-rdf.library.cornell.edu/individual/b3652543> ;
 iana:first <http://localhost:3000/individual/vci162> ;
 iana:last <http://localhost:3000/individual/vci164> ;
 dc:title "My list" ;
 dc:description "This is my list of references." .

<http://localhost:3000/individual/vci162> a ore:Proxy ;
 ore:proxyFor <http://da-rdf.library.cornell.edu/individual/b3652730> ;
 ore:proxyIn <http://localhost:3000/individual/vc155> ;
 iana:next <http://localhost:3000/individual/vci163> .

<http://localhost:3000/individual/vci163> a ore:Proxy ;
 ore:proxyFor <http://da-rdf.library.cornell.edu/individual/b3652234> ;
 ore:proxyIn <http://localhost:3000/individual/vc155> ;
 iana:prev <http://localhost:3000/individual/vci162> ;
 iana:next <http://localhost:3000/individual/vci164> .

 <http://localhost:3000/individual/vci164> a ore:Proxy ;
 ore:proxyFor <http://da-rdf.library.cornell.edu/individual/b3652543> ;
 ore:proxyIn <http://localhost:3000/individual/vc155> ;
 iana:prev <http://localhost:3000/individual/vci163> .

Data Structure Approaches

The ORE implementation in the triple store will maintain a doubly linked list using IANA ontologies first and last predicates on the list and next and prev on
the proxy. Once loaded into memory, the ORE triples will be converted into a List Header Info hash data structure with an array of items each holding a
List Item Info hash data structure. Testing was executed to analyze the efficiency of working with arrays of List Item Info hash data structures.

Limit testing for array in-memory data structure

Tests descriptions:

array_create - use Array fill method to add array items with values from 0 to max_items
array_move - use Array insert(to, delete_at(from)) to move an item from the end of the filled array to the beginning (worst case scenario)
list_create - create a list header data structure and list item data structures with sample real world data using items[i]=item_info to add each item
to the items array
list_move - use Array insert(to,delete_at(from)) to move an item from the end of the filled array to the beginning AND update prev and next links
list_find - use 0.upto(items.size-1) to check the value of items[i][:uri] to see if it matches the search value for uri - Test looks search for last item in
list

Environments for testing:

Laptop
RAM: 16 G (approximately 4.5 G is allocated to other running programs prior to running tests)
Processor: 2.3 GHz quad core

DEV VM
RAM: 2 G (approximately 0.6 G is allocated to other running programs prior to running tests)
Processor: 2.3 GHz dual core

Target production system:

RAM: 2-8 G
Processor: 2.3 GHz dual core

Test code: https://gist.github.com/elrayle/f5f559f8c10243600dc6

Results:

https://gist.github.com/elrayle/f5f559f8c10243600dc6

Max
Items

array_create array_move list_create list_move list_insert list_append list_find_last list_find_random

 Laptop DEV
VM

Laptop DEV
VM

Laptop
(16Gb)

DEV
VM

(2Gb)

Laptop DEV
VM

Laptop DEV
VM

Laptop DEV
VM

Laptop DEV
VM

Laptop DEV
VM

1,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

500,000 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0

1,000,000 0 0 0 0 4 5 0 0 0 0 0 0 0 0 0 0

2,000,000 0 0 0 0 11 13 0 0 0 0 0 0 0 0 0 0

4,000,000 0 0 0 0 35 OOM 0 OOM 0 OOM 0 OOM 1 OOM 0 OOM

8,000,000 1 1 0 0 115 0 0 0 2 0

10,000,000 1 1 0 0 167 0 0 0 2 0

20,000,000 1 2 0 0 OOM OOM OOM OOM OOM OOM

40,000,000 4 4 0 0

80,000,000 6 8 0 0

100,000,0
00

8 11 1 1

* Time measured in seconds

* OOM - Out of Memory

Analysis:

Converting triples data into an array of items is constrained by memory and the execution time of retrieving data from the triple store and constructing the
list. A modest 2Gb of RAM will support holding all data up to approximately 100,000 items and maintain processing efficiency. Implementations
supporting a list of greater than 100,000 items or many concurrent lists of smaller item counts will likely require a more sophisticated approach to retrieving
and storing items in-memory.

Alternate Approaches:

Combine ActiveTriples with Solr. In this implementation, ActiveTriples will be used for managing and updating individual resources and/or a few
of resources at a time (e.g. the Aggregation resource and any modified Proxy resources). For managing viewing and paging through lists, data
will be stored in Solr and use built in Solr features for sorting, requesting pages of data and paging forward and back, extending Proxy resource
data to include data about the item being aggregated that comes from different data stores, etc.

Inclusion of an order predicate in the triples for the list AND/OR in the Solr fields for the proxies. More exploration needs to happen to determine
the feasibility of inclusion of an order triple in the list triples. Any change to the order will require a change to potentially all proxy triples in the
list. The same scale of change would be required on the Solr side, but could be done asynchronously. In this approach, the triple store will be
immediately correct upon persistence of the change and the Solr index may lag. As the Solr index is used primarily for UI display, the lag is likely
acceptable with the proxies near the display being changed first and the out of date proxies being farther away from those being displayed.

Use Cases:

Use Case: Fetch the first N items in the list and display to user; Fetch next N and display; Fetch prev N and display;
Fetch page X and display

Scenario:

User is browsing the list starting from the beginning, displaying N items at a time with the ability to move forward and back through the display of N items.

Operations:

Fetch range starting from first and retrieving the next N items
Iterate over list from ListHeaderInfo.first_loaded to last_loaded using ListItemInfo.next (next method) to traverse the list

Display items in order with value=ListItemInfo.proxyFor URI and id=ListItemInfo.uri (Actually will get the title from a proxyFor triple and
use that as the display value, but proxyFor's title isn't available from List Item Info. It requires extra processing beyond the ORE GEM.)

User presses next button causing fetch of next N items starting from ListHeaderInfo.resume_next_token
Iterate and display
User presses previous button causing fetch of prev N items starting from ListHeaderInfo.resume_prev_token
User presses button for page X; Find first item on page X

For Doubly linked list + order index, the first item on page X with page size = N can be calculated.
For Doubly linked list, not directly supported. Could do traversal of list (potentially asynchronous) to determine first item on Y pages
beyond and preceding the current page.

Analysis:

In-memory Data Structure
All three will perform equally well for iteration from first to last.

Triple Store Data Structure
Doubly linked list + order index will perform better for fetch N items. However, this is likely to not be significant at low N. Not sure how
large N needs to be before this becomes an issue.
Doubly linked list + order index Triple Store Data Structure will perform much better for fetch page X.

Use Case: Add additional information to ListItemInfo before display

Scenario:

Display information is not part of ORE triples. For example, proxyFor is a URI to a book which has a DC.title, DC.description, etc. Would like to be able to
add this information to each ListItemInfo structure and pass that to the UI code for display.

Operations:

Fetch occurs according to previous user case.
Before display,

traverse the loaded items, fetch(rdf_subject=ListItemInfo.proxyFor)
get object values to be displayed
add to ListItemInfo hash structure

Send updated ListItemInfo structures to UI for display

Analysis:

In-memory Data Structure
All three will perform equally well for traverse and update.
See also analysis of Fetch N items use case.

Triple Store Data Structure
Both will perform equally well for traverse and update
See also analysis of Fetch N items use case.

Use Case: Move position of an item in the list

Scenario:

User is browsing the list and drags an item to a new position in the list.

Operations:

KNOWN: ListItemInfo.uri of item being moved (from id of item in display list) – could also use ListItemInfo.position
KNOWN: ListItemInfo.uri of item preceding position of insert – could also use ListItemInfo.position
update links of old prev item, old next item, new prev item, new next item, and item being moved (and potentially list first or last if needed)
persist all modified resources (perhaps triggered by user clicking Save button or auto-save with each change)

Analysis:

In-memory Data Structure
Hash is most efficient with direct access by ListItemInfo.uri (key of hash) and no moves are required within the data structure. Only links
are updated.
Doubly linked list is less efficient as the list has to be traversed to find the items to update. No moves are required within the data
structure as only links are updated.
Array is the least efficient. Direct access using ListItemInfo.position can be used to locate the items, but the array will need to be
reordered to reflect the change in order of the list items. (Assumes reorder operation is more expensive than traversal operation.)

Triple Store Data Structure
Both will perform equally well.

Use Case: Add (append) item to end of list

Scenario:

User is browsing the catalog and decides to add one or more bibliographic references to the list. Add items defaults to append to end of list.

Operations:

create new instance of ORE::Proxy

fetch ListHeaderInfo.last
update list items prev and next links and list last
persist all three resources

Analysis:

In-memory Data Structure
All three will perform equally well.

Triple Store Data Structure
Both will perform equally well.

Use Case: Sort list items by value not stored in list.

Scenario:

User chooses to sort list items by a display value that is not stored as part of the triples associated with the ORE list triples. For example, the list is
aggregating bibliographic references. The properties of the bibliographic references may be stored in a separate triplestore. Example sort criteria are title,
publication date,

Operations:

How to query across from one triplestore, TS? Query: fetch where TS.uri in TS.uri.aggregates sort_by TS.title start_at 60 limit 20
How to query across two triplestores, TS1 for list and TS2 for bibliographic references? Query: fetch where TS2.uri in TS1.uri.aggregates sort_by
TS2.title start_at 60 limit 20
How to query from Solr? How to add to Solr? How to make incremental updates?

Analysis:

In-memory Data Structure
???

Triple Store Data Structure
???

List Header Info Structure

The list header info will be a hash. It holds information about the list as a whole and the currently loaded range of items as a sub-structure. The values for
the list information stored depends on the type of the loaded items sub-structure. The loaded items sub-structure holds items as a group are in-memory
using one of four possible grouping methods: doubly linked lists, doubly linked lists + order index, array, or hash with proxy URI as the key. NOTE: Order
index is global to the entire list. The array and hash implementations may also have this global order index information stored with the item info.

 example value types Comments

key description of value doubly
linked

doubly
linked
+ order

array hash

first pointer to first item in list URI of first
proxy

URI of first
proxy

URI of first
proxy

URI of first
proxy

last pointer to last item in list URI of last
proxy

URI of last
proxy

URI of last
proxy

URI of last
proxy

count count of all items in list X last.index last.index last.index Count for full list is available for array and hash when order
index is stored in triplestore.

first_loaded pointer to first item in loaded
range of items

item item array[0] URI of
first loaded
proxy

current pointer to current item item item int cpos URI of
current
proxy

points to first item on fetch
updated to next/prev item during traversal
points to last modified item when changes are made

last_loaded pointer to last item in loaded
range of items

item item array[size of
array]

URI of
last loaded
proxy

count_loaded count of items in currently
loaded range

X =position
of last
- position
of first

size of array size of
hash

resume_next
_token

pointer to item after
last_loaded

URI of
proxy

URI of
proxy

URI of proxy URI of
proxy

resume_prev
_token

pointer to item just before
first_loaded

URI of
proxy

URI of
proxy

URI of proxy URI of
proxy

loaded_items pointer to loaded items use
first_loaded

use
first_loaded

array hash

List Item Info Structure

Each item's info is stored in a hash. It holds information about the individual item. The loaded items as a group are in-memory using one of four possible
grouping methods: doubly linked lists, doubly linked lists + order index, array, or hash with proxy URI as the key.

 example value types

key description of value doubly
linked

doubly
linked
+ order

array hash Comments

uri URI of proxy for this item URI of this
proxy

URI of this
proxy

URI of this
proxy

URI of this
proxy

This is the hash key for loaded_items when the list is
implemented as a hash.

prev pointer to previous item in list URI of
prev proxy

URI of
prev proxy

= p - 1 URI of
prev proxy

next pointer to next item in list URI of
next proxy

URI of
next proxy

= p + 1 URI of
next proxy

prev_loaded pointer to previous item in
loaded range of items

prev item prev item = pl - 1 URI of
prev proxy

next_loaded pointer to next item in loaded
range of items

next item next item = pl + 1 URI of
next proxy

proxyFor URI of list item being aggregated URI URI URI URI

proxyIn URI of list aggregation URI of
aggregation

URI of
aggregation

URI of
aggregation

URI of
aggregation

proxyIn_load
ed

pointer to List Header header header header header

position (p) position in full list X p p p Position in full list is available for array and hash when order
index is stored in triplestore.

position_loa
ded (pl)

position in loaded range of items X pl pl X

	ORE Ontology GEM Implementation

