
Spring Configuration

Fedora 3.5 begins shifting the management and
configuration of modules and components from
the legacy Fedora Configuration syntax (.fcfg files)
to the Spring 3 Framework. In this transitional
release, Fedora will parse the modules and
datasources in the fcfg as bean definitions, and
then attempt to load all xml files in the spring
configuration subdirectory as xml bean definitions.
Bean definitions in this subdirectory will override
fcfg configurations.

On this page:

Configuring the Server Module
Configuring Modules
Required Bean Configurations
Newly Configurable Components

AttributeFinderModule (3.5)
JAX-RS (3.6)
JAX-WS (3.6)
PolicyEnforcementPoint (3.6)
Rebuilders (3.5)
TriplestoreConnector (3.5)
TripleGenerator (3.5)

Spring Application Contexts in Fedora 3.5
Spring Application Contexts in Fedora 3.6

Configuring the Server Module
Beginning with Fedora 3.6, the Fedora Server module (ie, the implementation of org.fcrepo.server.Server) is configured in the Spring application
context. This file is located under the Fedora web-app's WEB-INF directory; in the Tomcat unpacked by the installer, this will be in $FEDORA_HOME
/tomcat/webapps/fedora/WEB-INF/applicationContext.xml. In this file, there is a Spring bean with an id of "org.fcrepo.server.ServerConfiguration" that
reproduces the server module configurations that used to be available in the fedora.fcfg file. For example, specifying the hostname of your FCRepo server
is done by changing the value of configuration Parameter of that bean whose first argument is "fedoraServerHost". Other configurable parameters include:

datastreamExtensionMappingSource
datastreamExtensionMappingId
httpClientMaxConnectionsPerHost
httpClientSocketTimeoutSecs
fedoraServerHost
datastreamExtensionMappingLabel
fedoraServerPort
fedoraRedirectPort

... and others. The applicationContext.xml file is annotated with notes describing the configurable parameters and their acceptable values.

Configuring Modules
In the transition of 3.5, the interface of a module (also called the "role" in .fcfg files) is the name/id by which the module bean will be requested from the
application context. Thus, if you are configuring the DOManager as a bean, you may write the following configuration to use the default implementation as
a Spring bean:

<bean id="org.fcrepo.server.storage.DOManager"
 name="org.fcrepo.server.storage.DOManager"
 class="org.fcrepo.server.storage.DefaultDOManager"
 destroy-method="shutdownModule" init-method="initModule" autowire-candidate="true" lazy-init="true">
<constructor-arg index="0">
 <bean factory-bean="org.fcrepo.server.storage.DOManagerConfiguration" factory-method="getParameters" />
</constructor-arg>
<constructor-arg index="1" ref="org.fcrepo.server.Server" />
<constructor-arg index="2">
 <bean factory-bean="org.fcrepo.server.storage.DOManagerConfiguration" factory-method="getRole" />
</constructor-arg>
</bean>

Take care to write and configure the shutdown/destroy methods for your module! Also note the configuration beans. It is a convention in 3.5 that a
module configuration bean, if it is necessary, will be named (module name)Configuration. For example, the configuration in the example above, for org.

, is . If you need such a configuration bean, you may use fcrepo.server.storage.DOManager org.fcrepo.server.storage.DOManagerConfiguration org.
 bean to provide one like so:fcrepo.server.config.ModuleConfiguration

<bean id="org.fcrepo.server.storage.DOManagerConfiguration"
 name="org.fcrepo.server.storage.DOManagerConfiguration"
 class="org.fcrepo.server.config.ModuleConfiguration"
 autowire-candidate="true">
<constructor-arg index="0">
<list>
<bean>
<constructor-arg type="java.lang.String" value="pidNamespace" />
<property name="value" value="changeme" />
</bean>
<bean>
<constructor-arg type="java.lang.String" value="storagePool" />
<property name="value" value="localDerbyPool" />
</bean>
<bean>
<constructor-arg type="java.lang.String" value="storageCharacterEncoding" />
<property name="value" value="UTF-8" />
</bean>
<bean>
<constructor-arg type="java.lang.String" value="defaultExportFormat" />
<property name="value" value="info:fedora/fedora-system:FOXML-1.1" />
</bean>
<bean>
<constructor-arg type="java.lang.String" value="gSearchRESTURL" />
<property name="value" value="http://localhost:8080/fedoragsearch/rest" />
</bean>
<bean>
<constructor-arg type="java.lang.String" value="gSearchUsername" />
<property name="value" value="exampleUsername" />
</bean>
<bean>
<constructor-arg type="java.lang.String" value="gSearchPassword" />
<property name="value" value="examplePassword" />
</bean>
</list>
</constructor-arg>
<constructor-arg index="1" type="java.lang.String" value="org.fcrepo.server.storage.DOManager" />
<constructor-arg index="2" type="java.lang.String" value="org.fcrepo.server.storage.DefaultDOManager" />
<constructor-arg index="3" type="java.lang.String" value="The interface to the storage subsystem." />
</bean>

foo

Required Bean Configurations
As of the 3.5 release, there is only one uniformly required bean configuration: The bean must be included, with a destroy org.trippi.io.TripleIteratorFactory
method mapped to "shutdown". If your repository has the Resource Index enabled, then you will also need an org.fcrepo.server.resourceIndex.

 bean. Both of these beans are configured in $FEDORA_HOME/server/config/spring/triple-generator.xml, which is present by default if you TripleGenerator
have run the installer.

Newly Configurable Components

AttributeFinderModule (3.5)

Beginning with version 3.5, the PolicyEnforcementPoint is configurable in Spring, allowing the configuration of new/additional AttributeFinderModules to
support your XACML policy decisions.

JAX-RS (3.6)

Fedora 3.6 uses JAX-RS to manage its REST resources, and these resources are configured in Spring via Apache CXF. The configuration files for the
JAX-RS resources are located in . Resources configured here have access to beans in the $FEDORA_HOME/server/config/spring/web/jaxrs/
applicationContext, but they do not have direct access to module beans loaded by the Server implementation (though they can request them directly from
the Server).

JAX-WS (3.6)

Fedora 3.6 uses JAX-WS to manage its SOAP APIs. The configuration for these beans is in $FEDORA_HOME/server/config/spring/web/jaxws-impl.
. Like the JAX-RS beans, these APIs are configured in Spring via Apache CXF. The configured beans have access to beans in the applicationContext, xml

but must request module beans from the Server bean.

PolicyEnforcementPoint (3.6)

In Fedora 3.6, more of the XACML policy enforcement machinery is exposed to configuration via Spring. While the PolicyEnforcementPoint
implementations themselves are unlikely to be of general interest (unless you are writing an alternative authorization framework, like FESL), the exposure
of the policy loading strategies as a configurable bean may be. The default implementation, which loads all policies, is org.fcrepo.server.security.impl.

. SimplePolicyLoader

Rebuilders (3.5)

In version 3.5, the code that rebuilds Fedora's SQL database and Resource Index will look for all beans in the Spring context that implement org.fcrepo.
, and include them in its menu of rebuild options.server.utilities.rebuild.Rebuilder

TriplestoreConnector (3.5)

Version 3.5 includes changes designed to allow more flexible configuration of TriplestoreConnectors. There is an example of this configuration in
$FEDORA_HOME/server/config/spring/README.txt.

TripleGenerator (3.5)

When objects are created (or purged) in Fedora with the Resource Index enables, Fedora uses a TripleGenerator to determine which triples should be
added or deleted from the index. In version 3.5, this component is configurable in Spring. Editing this configuration allows the addition of new content
model-to-generator mappings for the default triple generator, .org.fcrepo.server.resourceIndex.ModelBasedTripleGenerator

Spring Application Contexts in Fedora 3.5
In Fedora 3.5, there are two "top level" application contexts: One manages the Spring components supporting the FESL authorization (AuthZ) filters, and
the other is the Server context in which the Fedora modules (and other beans configured in) are $FEDORA_HOME/server/config/spring/
managed. These contexts are currently planned to be joined in a future version of Fedora.

Spring Application Contexts in Fedora 3.6
In Fedora 3.6, Spring-configured web components (like the FESL authorization filters) are loaded in the same application context as the Server bean. All
the other modules are loaded, by default, in a context managed by the Server bean (ie, a child context).

	Spring Configuration

