
Home
"Eddies," said Ford, "in the space-time continuum."

"Ah," nodded Arthur, "is he? Is he?"

 Trippi 1.4.1 Released
 posted on Oct 17, 2008Edwin Shin

Trippi has been updated to include the latest release (2.0.6). Notably, this latest release of Mulgara includes updates to the storage layer (XA 1.1) Mulgara
which improves performance while using less space and fewer files. See the Mulgara for more details.release notes

I've been a bit remiss about actually creating file releases for Trippi on Sourceforge when new versions have been tagged, but this version has had a
proper release.

Fedora trunk and the maintenance branch have also been updated, so 3.1 and 2.2.4 (due later next week) will both include Trippi 1.4.1 (and thereby
Mulgara 2.0.6).

mulgara
trippi

 funAPI 0.1 Released
 posted on Oct 10, 2008Edwin Shin

I've released version 0.1 of the Fedora unAPI HTTP Service to .Sourceforge

No major changes since the , except for the addition of a FedoraPmhResolver. In contrast to the FedoraResolver, the original prototype
FedoraPmhResolver relies on Fedora's OAI service to describe the available formats for Fedora objects. Depending on the desired use, one may be more
suitable than another. The FedoraResolver is more flexible and can support arbitrary formats, but it requires Fedora 3.x. The FedoraPmhResolver should
work with any version of Fedora that supports OAI-PMH (although I've only tested it with 3.0).

Similarly, I expect the DSpacePmhResolver should work with any version of DSpace that support OAI-PMH, but I've only tested it against 1.5.1.

 Dissemination Architecture Updates
 posted on Sep 28, 2008Edwin Shin

In previous versions of Fedora (including 3.0), datastream inputs to service methods were limited to datastreams that were members of a given data
object. A typical scenario involved a dissemination that used XSL to transform one metadata format into another.

For example, in order to create a dissemination which used an XSL document to transform one metadata format into another, each object was required to
have a member datastream that contained the XSL document, even though the same XSL document was used by each object.

One way to mitigate this design was to create the XSL datastream in one object (say, demo:foo) and have every other object reference demo:foo's XSL
datastream. While this eliminated the need for multiple copies of the same XSL document, every data object still required an XSL datasteam of its own that
redirected to demo:foo's XSL datastream.

In order to workaround the requirement for every object to have its own XSL datastream (inline or redirect), the WSDL binding in the service deployment
could hardcode a reference to demo:foo's XSL datastream:

<wsdl:binding name="DC2MODS_http" type="tns:DC2MODSPortType">
 <http:binding verb="GET"/>
 <wsdl:operation name="transform">
 <http:operation location="SaxonServlet?source=(DC)&style=http://localhost:8080/fedora/get/demo:dc2mods.cmodel
/XSL"/>

Although this does the trick, it's a bit of a hack, and it's desirable to be able to describe the datastream binding in a more formal fashion. It's also fragile,
because of the hardcoding of the host and port and it also doesn't support authentication (e.g. if authentication is required for API-A).

I came across this issue in the development of the for Fedora. Rather than hardcode a datastream location in the WSDL binding, I unAPI HTTP service
extended the DSInputSpec schema to include an optional pid attribute. Absent the pid attribute, the datastream input is still assumed to belong to the data
object. However, if the pid is specified, the binding occurs against that pid's datastream.

As shown in the diagram above, the data objects no longer include an XSL datastream. Instead, the XSL datastream is located in demo:cmodel and is
referenced in the DSINPUTSPEC datastream of demo:sdep. One thing to note: although the XSL datastream is a part of the content model object, its
presence isn't actually described by the content model. In this case, however, I don't think it's appropriate to extend the dsCompositeModel schema such
that the dsTypeModel element take a pid attribute. As it stands, the content model object would itself have to have another content model in order to
accomplish this.

 /display/~eddie

https://wiki.lyrasis.org/pages/viewpage.action?pageId=7733832
 /display/~eddie

http://www.sourceforge.net/projects/trippi/
http://www.mulgara.org/
http://mulgara.org/release.html#v2.0.6
https://wiki.lyrasis.org/label/~eddie/mulgara
https://wiki.lyrasis.org/label/~eddie/trippi
 /display/~eddie

https://wiki.lyrasis.org/pages/viewpage.action?pageId=7733654
 /display/~eddie

http://funapi.sourceforge.net/
https://wiki.lyrasis.org/pages/viewpage.action?pageId=7176601
 /display/~eddie

https://wiki.lyrasis.org/pages/viewpage.action?pageId=7733419
 /display/~eddie

https://wiki.lyrasis.org/pages/viewpage.action?pageId=7176601

1.
2.
3.

1.
2.
3.

Other changes include removing the now-obsolete bDefPID attribute from both the Service Deployment (sDep) Method Map and DSInputSpec schemas.
To take advantage of these schema updates, the FORMAT_URIs for DSINPUTSPEC and METHODMAP datastreams should be updated to info:fedora
/fedora-system:FedoraDSInputSpec-1.1 and info:fedora/fedora-system:FedoraSDepMethodMap-1.1, respectively.

This work is currently available in the development branch and is planned for inclusion in the upcoming Fedora 3.1 release.FC-254
 · 3 Comments

cma

 Fedora 2.2.4 will replace Kowari for Mulgara
 posted on Sep 28, 2008Edwin Shin

The upcoming maintenance release of Fedora 2.2.4 replaces the aging Kowari triplestore with .Mulgara

Earlier last week, I committed the Mulgara-related updates to the maintenance-2.2 branch (r7733). Pending the backport of the fix for , we FCREPO-239
should be ready for release.

The replacement of Kowari 1.0.5 with Mulgara 2.0.5 (the current stable release at this writing) brings a number of bug fixes, performance and stability
improvements, and new features. A full list of modifications since the Kowari fork is available in the Mulgara distribution in the directory KOWARI-

.MODIFICATIONS

Notably, with this update, the Resource Index search interface (risearch) no longer supports RDQL. However, TQL continues to be supported and
SPARQL support has been introduced.

resourceindex
kowari
mulgara

 unAPI and Zotero, meet Fedora and DSpace
 posted on Sep 23, 2008Edwin Shin

Background

unAPI is an HTTP API for the few basic operations necessary to copy discrete, identified content from any kind of web application. Although there's
general utility in having Fedora support unAPI, the real motivation is enabling the automatic capture of citation information in .Zotero

There are three components to an unAPI implementation:

an identifier microformat
an autodiscovery link pointing to an unAPI service
an unAPI HTTP service

The unAPI HTTP service interface defines three methods:

listFormats (e.g.:)http://example.org/unapi/fedora
listFormats for a given identifier (e.g.)http://example.org/unapi/fedora?identifier=info:fedora/demo:1
getObject for a given identifier and format (e.g.)http://example.org/unapi/fedora?identifer=info:fedora/demo:1

The response format for 1 & 2 is an XML document that includes the name of the format, its mime-type, and an optional description of the format. For
example:

<formats id="info:fedora/demo:1">
 <format name="oai_dc" type="text/xml" docs="http://www.openarchives.org/OAI/2.0/oai_dc.xsd" />
 <format name="mods" type="text/xml" docs="http://www.loc.gov/standards/mods/v3/mods-3-2.xsd" />
</formats>

Fedora Implementation

Implementing the first two components of unAPI is quite straightforward. The identifier microformat for a Fedora resource would look like:

<abbr class="unapi-id" title="info:fedora/demo:1" />

The autodiscovery link might look like:

http://fedora-commons.svn.sourceforge.net/viewvc/fedora-commons/fedora/branches/fcrepo-254/
https://wiki.lyrasis.org/pages/viewpage.action?pageId=7733419&showComments=true#comments
https://wiki.lyrasis.org/label/~eddie/cma
 /display/~eddie

https://wiki.lyrasis.org/pages/viewpage.action?pageId=7733415
 /display/~eddie

http://www.mulgara.org/
https://fedora-commons.org/jira/browse/FCREPO-239
http://mulgara.org/trac/browser/tags/release-2.0.5-final/KOWARI-MODIFICATIONS
http://mulgara.org/trac/browser/tags/release-2.0.5-final/KOWARI-MODIFICATIONS
https://wiki.lyrasis.org/label/~eddie/resourceindex
https://wiki.lyrasis.org/label/~eddie/kowari
https://wiki.lyrasis.org/label/~eddie/mulgara
 /display/~eddie

https://wiki.lyrasis.org/pages/viewpage.action?pageId=7176601
 /display/~eddie

http://www.unapi.info/
http://www.zotero.org/
http://example.org/unapi/fedora
http://example.org/unapi/fedora?identifier=info:fedora/demo:1
http://example.org/unapi/fedora?identifer=info:fedora/demo:1

<link rel="unapi-server" type="application/xml" title="unAPI" href="http://example.org:8080/unapi/fedora" />

For the moment, I've just modified the viewObjectProfile.xslt (located in $FEDORA_HOME/server/access/) to include these two elements. As a result, the
rendering of say, , would now include those elements.http://www.example.org:8080/fedora/get/demo:1http://example.org/fedora/get/demo:1

There are a number of ways to implement the unAPI HTTP service. One approach might take a Fedora digital object (e.g. demo:1), and consider each of
its component datastreams as a format. Imagine demo:1 represents a journal article and contains four datastreams, DC, RELS-EXT, XML, and IMAGE.

However, I find this approach unsatisfactory because it doesn't allow for the author's notion of the different formats of the object. For example, the IMAGE
datastream might just be a component in an HTML rendering of the journal article and oughtn't be considered a format on its own. Moreover, this object
might be bound to services that can generate different representations of the object which wouldn't be captured at all by this approach.

What's called for is a programmatic means of indicating which representations of an object should be considered formats, at least as far as unAPI is
concerned. A content model savvy approach might enable a dissemination that returned the unAPI formats appropriate for a given content model instance.

In my prototype, I've added an XML datastream, UNAPI-FORMATS, to a content model object. This datastream describes the disseminations that should
be considered an unAPI format. Originally, I intended to describe the formats in RDF, but at least for purposes of the prototype, I'm using (wrapped JSON
with <json> tags so that I could have an inline XML datastream). For example:

<json>
 [["info:fedora/*/DC","oai_dc","text/xml","http://www.openarchives.org/OAI/2.0/oai_dc.xsd"],
 ["info:fedora/*/sdef:md/get?format=mods","mods","text/xml","http://www.loc.gov/standards/mods/v3/mods-3-2.
xsd"]]
</json>

This is an array of arrays. Those familiar with the Resource Index circa Fedora 2.x might be familiar with the first (inner) array element, which we called a
dissemination type. It is simply a dissemination URI where the PID of the object is replaced with a "*". The remaining elements correspond directly to the
unAPI format elements. Again, this particular implementation was an expedient. A more Fedora-esque solution might employ an sDef & sDep to bind
against a service that generated the JSON (or RDF) array.

The unAPI HTTP service is implemented as a separate web app. It's intended to be a general purpose service, not bound to Fedora. The Fedora-specific
implementation discussed above is provided by an implementation of an ObjectResolver interface. As a proof of concept, I also implemented an OAI-PMH
resolver, designed to provide unAPI services for any application that exposes OAI-PMH.

Zotero Integration

Enabling automatic citation capture in Zotero typically involves the creation of a . However, translators depend on regular expression site translator
matching against a site's URL, which doesn't work for the general case of supporting any Fedora based repository. Another approach would be to embed
Zotero-supported metadata in disseminations, e.g. embedding COinS in HTML renderings of Fedora objects.

By far the most flexible approach with all-around utility appears to be exposing unAPI in Fedora.

One noteworthy detail: Zotero doesn't appear to parse any other format than mods, at least when using unAPI. In my server access logs, after the request
for the object (e.g.), the next request is for the mods format (e.g., http://example.org/fedora/get/demo:1 http://example.org/unapi/fedora?id=info:fedora

). I don't see any requests for the various formats that might be available for that resource (e.g. /demo:1 http://example.org/unapi/fedora?id=info:fedora
). This is using Zotero 1.0.7, I haven't tried the 1.5 preview release./demo:1

Once I added a MODS datastream to my Fedora objects, browsing to an object's profile view yielded the little blue icon in my browser's location bar,
indicating that Zotero could grok my Fedora object.

DSpace Integration

As mentioned above, I also implemented an OAI-PMH resolver for the unAPI HTTP service. As DSpace provides OAI-PMH services, providing Zotero
support only involved the additional steps of enabling the MODS crosswalk and adding the unAPI microformat identifier and unAPI service link to display-
item.jsp.

Although the OAI-PMH resolver would also work with Fedora's OAI provider, the Fedora resolver allows for more flexibility. The Fedora resolver is not
limited to the formats exposed by OAI. If Zotero integration is the only use case, this additional flexibility isn't important. It shouldn't be difficult to write a
DSpace-specific resolver as well. I'm just not familiar enough with DSpace's API to do it myself.

Future Work

This work is part of a general Zotero integration effort. Making Fedora content Zotero-friendly is just one side of the coin. On the reverse is using Zotero as
a client to Fedora. If people are already using Firefox & Zotero to browse, cite and archive resources, it's just a small leap to imagine Zotero as a client that
enables users to save those resources (with proper metadata, no less) to a Fedora-based repository, and to share, preserve and re-use that content in the
context of a Fedora repository. And of course others will come and use Zotero to cite, annotate and share this new Fedora resource anew.

http://www.example.org:8080/fedora/get/demo:1
http://example.org/fedora/get/demo:1
http://www.json.org/
http://www.openarchives.org/pmh/
http://dev.zotero.org/translator_overview
http://example.org/fedora/get/demo:1
http://example.org/unapi/fedora?id=info:fedora/demo:1
http://example.org/unapi/fedora?id=info:fedora/demo:1
http://example.org/unapi/fedora?id=info:fedora/demo:1
http://example.org/unapi/fedora?id=info:fedora/demo:1

1.
2.
3.

The Zotero 1.5 preview release showcases initial support for saving content to a remote server (in contrast to the local SQLite database used in 1.0.x).
Unfortunately (from my perspective), it looks like Zotero's remote sync feature requires WebDAV support and I haven't heard of any plans to support other
protocols (AtomPub, anyone?). I'm wary of the effort that implementing WebDAV in Fedora would require.

zotero
unapi
oai

 Bug Parade - DC, Checksums, et al.
 posted on Sep 19, 2008Edwin Shin

Bugs fixed in dev-150796:

FCREPO-215 (Error validating checksum when adding/updating M datastreams)
FCREPO-223 (xml:lang attribute dropped from DC datastream)
FCREPO-236 (RI does not delete all triples)

The retainPIDs configuration parameter narrowly missed being purged entirely from the repository code base. For the time being, it lives on, but it is now
entirely optional, defaulting to "*", or, allow every PID namespace. Although I can conceive of cases where this parameter would be used, it hardly seems
worth the confusion it causes among new users. So it will carry forward into the next release in a diminished state, and perhaps disappear entirely the
release after that.

3rd-party library updates as well, including the latest MySQL and Postgres JDBC drivers, JUnit, and XMLUnit.

Trippi 1.4 has also been tagged and is now included in both dev-150796 and dev-2075361.

trippi
mulgara
resourceindex

 SPARQL Support
 posted on Sep 16, 2008Edwin Shin

I've updated Trippi to expose SPARQL in Mulgara. This was easier to implement than I had originally thought. I had thought that exposing Mulgara's
SPARQL support in Trippi would require the use of Mulgara's new Connection API, but that was not the case. I've also updated Trippi with the latest
Mulgara release (2.0.5).

Pending review of a patch submitted by Morten Grouleff for an unrelated Trippi bug, I'll tag a new 1.4 release for Trippi. In the meantime, dev-150796 and
dev-2075351 (branches for Fedora 3.0 and Fedora 2.2.x, respectively) contain the latest Trippi builds with SPARQL support.

trippi
mulgara
sparql
resourceindex

https://wiki.lyrasis.org/label/~eddie/zotero
https://wiki.lyrasis.org/label/~eddie/unapi
https://wiki.lyrasis.org/label/~eddie/oai
 /display/~eddie

https://wiki.lyrasis.org/pages/viewpage.action?pageId=7176592
 /display/~eddie

https://fedora-commons.org/jira/browse/FCREPO-215
https://fedora-commons.org/jira/browse/FCREPO-223
https://fedora-commons.org/jira/browse/FCREPO-236
https://wiki.lyrasis.org/label/~eddie/trippi
https://wiki.lyrasis.org/label/~eddie/mulgara
https://wiki.lyrasis.org/label/~eddie/resourceindex
 /display/~eddie

https://wiki.lyrasis.org/pages/viewpage.action?pageId=7176343
 /display/~eddie

https://wiki.lyrasis.org/label/~eddie/trippi
https://wiki.lyrasis.org/label/~eddie/mulgara
https://wiki.lyrasis.org/label/~eddie/sparql
https://wiki.lyrasis.org/label/~eddie/resourceindex

	Home

