
1.
2.
3.

Brainstorms on a Future UI
[June 2015] These brainstorms have now moved into a "Single UI Project"

While this "Brainstorms" page has been kept for historical reference, the development of a Single UI has been established as the top priority of the DSpace
Technology . Therefore, the brainstorms and discussions on this page are now slightly outdated.RoadMap

The plans for developing a "future UI" have moved to the following wiki pages:

Design - Single UI Project - Describes the schedule/plan for prototyping, designing and building a "future UI" based on the prioritiesRoadMap
Prototyping a Future UI - Describes in more detail the prototyping phase of the "future UI" (which is the first phase of the overall "Single UI
Project").

Discussion at 2015 DuraSpace Membership Summit

These brainstorms were discussed at a higher level during a Day 2 breakout of the entitled "2015 DuraSpace Summit The DSpace UI(s) – Can We
". The general consensus during those discussions seemed to be that we should consider consolidation into a single UI.Converge on a Single One?

The following slidedeck was presented during the discussions, detailing some of the breakdown of the current (as of March 2015) DSpace user base:
http://www.slideshare.net/tdonohue/discussion-on-dspaces-two-uis-duraspace-summit-2015

Background Info: Why are we brainstorming this (again) now?
Establishment of DSpace Governance
Questions this Brainstorm seeks to help answer
Resources & Timeline
Other Questions?

Multiple UIs vs One UI
Why are we shipping DSpace with two UIs (JSPUI & XMLUI)? Are there any advantages to doing so?

Possible Benefits of Multiple UIs
Possible Disadvantages of Multiple UIs
Possible Benefits of a Single UI
Possible Disadvantages of a Single UI

Should we consolidate into a single, out-of-the-box UI? (Please VOTE!)
What makes a good UI (framework)? What common "use cases" do we need to keep in mind?
UI Framework Analysis (Please add more!)

Background Info: Why are we brainstorming this (again) now?

Establishment of DSpace Governance

In 2014, DuraSpace helped the DSpace project establish it's first . While initially "appointed", going forward this Steering DSpace Steering Group
Group will be elected. They now control the allocation of funds donated to DSpace (and the DSpace Tech Lead reports to them).
In 2015, DuraSpace helped the DSpace project establish it's first . This Leadership Group is a larger group of DSpace Leadership Group
community key stakeholders (primarily representing institutions who are also). DuraSpace Members who have given money to the DSpace project
The Leadership Group will elect future Steering Group members, and they also represent the broad DSpace community and can vote to accept
/reject any proposals from the Steering Group, Committers or DCAT. (NOTE: This group is still in the process of being formed)
The Steering Group's role is to "ask the right questions" and make general suggestions for how the DSpace product may wish to move forward.
They will work directly with Committers and DCAT to actually help those questions (Committers are still the primary DSpace technology answer
decision makers, and DCAT is still the primary DSpace "use case" decision makers).
One of the first questions that the Steering Group has asked is essentially: "Why are we shipping DSpace with two User Interfaces
again? Doesn't that split up our resources significantly and make it harder to develop for DSpace? We should consider whether it is worth
consolidating to out-of-the-box UI."one,

Questions this Brainstorm seeks to help answer

So, the question(s) this page is trying to brainstorm include:

Why are we shipping DSpace with two UIs (JSPUI & XMLUI)? Are there any advantages to doing so?
Should we consolidate into a single UI?
If the answer to consolidation is "yes", what UI should we consolidate under? Should we just ship with the JSPUI? Should we just ship with the
XMLUI? Or should we build a new, modern replacement UI and ship with that?

Resources & Timeline

Assuming we did decide to rebuild/rewrite one of our existing UIs, or even build a new UI, how would we get enough resources (i.e. developers)
to do this in a timely manner?

If we decided to revamp or build a new UI, the Committers can recommend that to DSpace Steering. Assuming Steering approves, they
would ask the Leadership group to vote on the idea.
If the Leadership group votes to approve the idea, then the Steering & Leadership would seek out the necessary resources to make this
happen.
As some of the institutions represented on Steering & Leadership have DSpace developers (or even Committers) on staff, the hope
would be that they would donate some developer time to help achieve our goals in a timely manner.

When would this happen? What is the timeline?

#
#
#
#
https://wiki.lyrasis.org/display/DSP/2015+Membership+Summit+Meeting%2C+March+11-12%2C+2015
http://www.slideshare.net/tdonohue/discussion-on-dspaces-two-uis-duraspace-summit-2015
http://www.slideshare.net/tdonohue/discussion-on-dspaces-two-uis-duraspace-summit-2015
http://dspace.org/steering-group
http://dspace.org/leadership-group
http://duraspace.org/all_members/dspace

There are NO set timelines for this decision as of yet. It's merely a brainstorm to get a sense of what the developers and Committers feel
may be the best direction forward.
Tim Donohue will be updating the Steering Group on this discussion as it progresses, and if any timelines are set, the entire community
will be informed.

Other Questions?

If you have other questions which are not answered here, please feel free to ask them (either paste them in this section, or email)Tim Donohue

Multiple UIs vs One UI

Why are we shipping DSpace with two UIs (JSPUI & XMLUI)? Are there any advantages to doing so?

Before deciding on a future direction for the DSpace UI(s), we have to face up to the " ". elephant in the room We currently are building, maintaining and
supporting two UIs (JSPUI & XMLUI) under a single Committers group.

Therefore, in order to move forward, we must make a decision on whether this direction is the best one for DSpace. As such, here's some pros/cons to
multiple vs single UIs...(feel free to add your own)

Possible Benefits of Multiple UIs

Choice: Having multiple UIs provides users & developers with a choice. They can choose which UI better fits their needs or their local technology
expertise.
Competition: Having multiple UIs provides friendly competition between UI developers. As one UI makes improvements / enhancements, it
encourages the other to do the same (or risk losing users to the "better" UI).

Possible Disadvantages of Multiple UIs

Developer Resources: Building, supporting & maintaining two UIs essentially requires twice as many developer resources. If the community is
large enough (which arguably DSpace is), there may be enough developers to support this. However, this becomes less maintainable when a
single Committers group is expected to be knowledgeable enough on UIs to support/build/maintain both simultaneously. Two UIs really both
requires two committers teams (one specifically devoted to each UI).

Possible Benefits of a Single UI

Developer Resources: Obviously, one UI requires less developer resources to build, support and maintain.
Easier to "Roadmap": It is much easier to plan out a long term roadmap/plan for DSpace if we have a single UI which all features integrate must
into. It becomes harder to plan out features that must be supported in multiple UI frameworks / infrastructures

Possible Disadvantages of a Single UI

One UI technology must rule them all : Can we all come together to decide on a common technology framework that actually will meet all our
needs? Or are there actually separate needs / use cases that warrant the building of distinct UIs (similar to Hydra project)

Should we consolidate into a single, out-of-the-box UI? (Please VOTE!)

Given the benefits and disadvantages above, one thing seems abundantly obvious: We cannot reasonably expect to continue supporting two UIs with
Or to restate that, it is unreasonable to expect any Committer (who are all volunteers, working at their own jobs) to be well a single Committers team.

versed enough to support, maintain, develop and review fixes for multiple UIs simultaneously. This is an obvious misuse of the volunteer resources
provided. Each institution has already made their own personal decision on which UI they wish to use, yet we are essentially forcing some institution's
developers (e.g. Committers) to also be knowledgable on the UI (which they never use on a day to day basis).other

Given this, it only seems reasonable to also conclude:

Conclusion: Our DSpace Committers group can only reasonably build/support/maintain a single, out-of-the-box DSpace UI.
Please note this does NOT state there should only be (as noted above there are some advantages to multiple UIs). It simply ONE UI
states that there will only be one UI. out-of-the-box
If there are enough developers/institutions who see an ongoing need for a secondary UI, they are welcome to build, support and
maintain a secondary, optional UI with their own, separate group of developers/committers.

A sidenote of sorts: If a secondary "committers group" were to form around a secondary UI, it may someday make sense to
"split" the "DSpace Committers Group" into several "sub-teams": One team in charge of the underlying API / REST API, one
team in charge of the primary, out-of-the-box UI, one team in charge of the secondary UI (if any). These teams would likely
have some overlapping members, but they'd each be self-sufficient and more tailored to the needs of each individual sub-
modules.

Opinions? Please feel free to add +1 / 0 / -1 to this conclusion, and any comments you may have
I AGREE: We only should maintain a single, out-of-the-box DSpace UI. If a secondary UI is built (or continues to be maintained), it
should be maintained by a separate team of committers / developers (and therefore become a separate project or organization in
GitHub).

+1 Tim Donohue
+1 Bram Luyten (Atmire)

https://wiki.lyrasis.org/display/~tdonohue
https://wiki.lyrasis.org/display/~tdonohue
https://en.wikipedia.org/wiki/Elephant_in_the_room
https://wiki.lyrasis.org/display/~tdonohue
https://wiki.lyrasis.org/display/~bram

1.
2.

a.

3.

a.

b.

4.
a.

5.

6.

7.

8.

a.

9.

a.

10.

11.

12.
a.

b.
i.

+1 (however, with the caveat that UI application logic be integrated into DSpace core such that additional UI may Mark Diggory
be easily authored and maintained externally)
()add your name here, if you agree with the above conclusion. Feel free to also add additional thoughts/comments
+1 Claire Knowles
+1 Emilio Lorenzo (arvo)

I DISAGREE: We should continue to support/maintain multiple out-of-the-box DSpace UIs with our existing DSpace Committers Team
(add your name here, if you disagree with the above conclusion. Feel free to also add additional thoughts/comments)

What makes a good UI (framework)? What common "use cases" do we need to keep in mind?

The following is a list of features/needs/use cases which we feel would make a good User Interface / User Interface framework. Since not all of these
features/needs would have the same importance, we've categorized some as "required", "recommended" or "optional". (Please feel free to add more ideas

)/thoughts, if we are missing anything

Open Source (): required Obviously. Also we need to .avoid GPL and similar licenses which are incompatible with BSD
Easy to run "out-of-the-box" ():required in keeping with DSpace Vision, any UI or UI framework must be easy to get running "out-of-the-box".

DCAT feedback 2015-03-10: We're not sure what easy to run out of the box means for a UI or UI framework. Does that mean that the
framework in itself can't have too many dependencies? How would one framework qualify as easier to run compared to another one?

 ():Ease of Branding/Theming required A User Interface should be easy for institutions of all sizes to brand or theme. This means even smaller
institutions (without a full time DSpace developer) should be able to theme or brand DSpace with some amount of ease. At a minimum, things like

Ideally, the UI would support third-party themes (e.g. the header/footer/color scheme and basic layout should be simple to modify or customize.
Bootstrap themes from or similar) which can be easily applied to the UI to change its entire look and feel.http://bootswatch.com/

DCAT feedback 2015-03-10: We see it as a substantial feature/requirement to be able to apply themes to different sections of different
DSpace (collections, communities). It would be great if "some amount of ease" would be more tightly defined as: Configurable within the
user interface itself and does not require a rebuild or restart of the system, especially when we're talking about basic theme config
changes.
in addition to general "look and feel" theming, it should be possible to easily configure basic functionality, such as the order and selection
of metadata fields to display on simple and full item pages. Such customisation belongs at a configuration level, and does not need to be
intermingled with design concerns.

Responsive Web Design () :required a UI should be and mobile-friendly, adapting to the size of various devices.responsive
Bootstrap support (): Ideally, the UI would support , since it is one of the most widely used and supported recommended Bootstrap
responsive frameworks

HTML5 Support ():required a UI should be able to support . Ideally, it is built primarily with HTML5 in mind, rather than only supporting HTML5
some aspects of HTML5.
REST API friendly ():highly recommended a UI should be built with the idea of "separation of concerns". For example, the UI framework
should include NO business logic or Database query logic, etc. It should also have no knowledge of the underlying storage framework (e.g.
Database schemas, file storage locations, etc). Instead, ideally it would communicate with DSpace primarily through the REST API (and other
similar layers, e.g. Solr or Elastic Search). It would NEVER communicate directly with the database or other underlying storage layers.
Faceted/Filtered Search/Browse friendly ():highly recommended a UI should easily integrate with a faceted/filtered search engine/server
(such as Solr pr Elastic Search) or a generic API which can communicate with said faceted/filtered search engine (e.g. Discovery, Blacklight)
Rapid Development support / Developer friendly ():highly recommended a UI should be easy to develop against and improve upon. Ideally
in a popular technology or language. Local developers should not need to go through extensive training to work with the UI. The framework and
technology ideally should be widely used, so that newer developers can also quickly come up to speed. (Some examples: Ruby on Rails is a
popular widely used technology/language. As is, seemingly, the . Both are obviously much more widely used and easier to Java Play! framework
develop with than say Apache Cocoon)

DCAT feedback 2015-03-10: This requirement could benefit from being split into two: on one hand there is the availability of learning
resources, examples and a large community that results in developer friendliness. The other part would be the long term longevity
/sustainability. One particular framework could be very well documented with nice examples, but if it is controlled by a smaller number of
organizations it might score bad on a criterium for long term sustainability.

Active, third party plugin ecosystem ():highly recommended a UI framework should ideally come with an active plugin/module/tool
ecosystem. This is not only the sign of a strong community around the UI framework, but also eases the development burden on DSpace
developers, as we no longer need to build all features specific to DSpace. (For example, a UI framework that came with its own, third-party
Authentication plugins would allow us to utilize that rather than building our own plugins for Shib/LDAP, etc)

DCAT feedback 2015-03-10: Plugins like Authentication or other elements related to business logic might be out of scope for many
frameworks that only deal with UI. It would be interesting to see how this requirement conflicts with the "separation of concerns" in 6.
REST-API friendly.

Standard way of dealing with internationalization (i18n) or translations ()required : DSpace has multiple international language communities
who each manage their own set of translations for the interfaces. Migration from the current way of managing these translations to the new
framework should be possible. Contribution of new translations should not be more difficult than it is today.
Java-friendly ():recommended DSpace's underlying framework & API is Java, and likely will remain Java. There are no plans to completely
rewrite DSpace. However, this does NOT mean the UI needs to also be written in Java, but it may be best that the UI technology is Java-friendly
or even in a language that is similar to or based off Java (e.g. Javascript, Groovy, even Ruby is similar enough).
Flexible URL Structure: It might be too limiting to work with a UI framework that imposes a very specific, limiting URL structure.

DCAT feedback 2015-03-10: Even though not all DSpace urls can be exactly the same in the new framework, DCAT still sees it as
essential that dspace item URLS should still be preserved. The use case here is that when someone has linked directly to handle based
a DSpace item url (and if the institution was not using handle.net), the links should ideally not break. As an alternative, it would be nice to
have a ghost app or redirection service to keep the old dspace urls alive in case they are replaced by new ones. It is also very likely that
URL namespace and structure should not be a UI Framework concern, but business logic/API design.
Opinions:

Mark Diggory : I just want to comment that with the handle system, DSpace does not need to have "handle based
 address locations" , they are an unnecessary redundancy and IMO, a "Red Herring" that appears to confuse those interested

 in citing DSpace content (http://some-dspace-host/handle/NNN.N/NNNN != http://hdl.handle.net/NNN.N/NNNN). In fact,
removing this redundancy would eliminate such confusion and clarify what URI are handles and what URI are not handles. The
entire point of the handle system and handle URI is to create a Persistent Identifier for the resource that is dereference

 able and different than its actual location . The reason for doing this is so that the PID cited for a resource can have its
mapping adjusted in the handle resolver and still be resolvable should that resource need to be moved to a new platform.
Please note that the inclusion of "/handle/NNN.N/NNN" as the URL for a Community, Collection or Item was an early developer
decision in the initial creation of the system and that the options and impacts may not have been fully analyzed. It may be better

https://wiki.lyrasis.org/display/~mdiggory
https://wiki.lyrasis.org/display/~cknowles
https://wiki.duraspace.org/display/DSPACE/Code+Contribution+Guidelines#CodeContributionGuidelines-LicensingofContributions
http://bootswatch.com/
https://en.wikipedia.org/wiki/Responsive_web_design
http://getbootstrap.com/
https://en.wikipedia.org/wiki/HTML5
https://www.playframework.com/
https://wiki.lyrasis.org/display/~mdiggory
http://some-dspace-host/handle/NNN.N/NNNN
http://hdl.handle.net/NNN.N/NNNN

12.

b.
i.

for the overall architecture and future of DSpace to focus on defining and better improving the integration and mapping
capabilities of the CNRI Handle plugin and resolver rather than than to force these ambiguous resource addressing conventions
on a future system and its users.

UI Framework Analysis (Please add more!)

Here's a few possible UI frameworks which we may wish to analyze for a single future UI. A much larger listing of various web application frameworks
appears on Wikipedia: https://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks

Please feel free to add more that you feel would be worth analyzing for DSpace!

UI
Framework

Languages /
Technologies

Widely Adopted? Ease of
Customization

Responsive
web design
support

HTML5
support

REST-
friendly

Faceted
/Filtered
Search
/Browse
friendly

Rapid
Development
friendly

Third-
party
plugin
ecosystem

Notes

Existing
DSpace XMLUI

Java, Apache
Cocoon,XSLT, als
o leverages
Spring WebMVC

No Not really (except
maybe at Bootstrap
level with Mirage2)

Mirage 2 theme =
Yes

Other themes = No

No No Yes No No Apache Cocoon
has very little
adoption and
support these days,
and hasn't had a
new release in
many years.

Apache Cocoon
could be considered

 by forked locally
most of the third
party projects that
utilize it.

 Personal opinions on DSpace XMLUI:

Tim Donohue: My personal opinion is that, as it currently exists, the XMLUI should not be the choice going forward as it is based on an outdated, nearly obsolete framework (Apache Cocoon). In
my opinion, it would require abandoning Apache Cocoon to be in consideration.
Graham Triggs Drawbacks are size of the framework, complexity of the framework, lack of adoption and support for Apache Cocoon.
Mark Diggory: Note, since DSpace 1.8 XMLUI also provides Spring WebMVC context and control (whose viewing technology is still Cocoon). I consider the points and REST-friendly Rapid Dev

 to be subjective, we to rapid dev in Cocoon often, but it certainly is not a Rails, Grails, Play experience). Also note, friendly Considerable parts of JSPUI were copied to XMLUI and placed into
Cocoon Action, Matcher and Transformer classes, this UI logic could be compartmentalized separate from both UI and used across all web-applications including dspace-rest. Examples include

, , , even parts of Submission and Workflow . An ideal path forward would authentication session management request management, context management resource resolution (jspui , xmlui)
migrate these features out of xmlui/jspui, where possible, make them UI agnostic, and place them into dspace-api.

Existing
DSpace JSPUI

Java, JSPs No Not really (again,
except maybe at
Bootstrap level with
Mirage2)

Yes A few areas
(e.g .HTML5
upload), but
not overall

No Yes No No The JSPUI
codebase is
approximately 13+
years old, despite
some recent work
to update it to use
Bootstrap.

 Personal opinions on DSpace JSPUI:

Tim Donohue : My personal opinion is that, as it currently exists, the JSPUI should not be the choice going forward, as its codebase is extremely dated and not easy to work with (despite the
recent UI redesign). In my opinion, it would require a major overhaul to be in consideration. To be clear, this doesn't mean JSPUI is "dead", just that it would need a lot of cleanup work / redesign
if we want to go this route.
Graham Triggs : A rewrite would be essential - preferably moving away from JSP to a templating engine, even if not using a recognized MVC framework. However, the benefits of being based
on a widely known technology and having a small footprint are apparent.
Mark Diggory : Any move to repurpose or evolve of JSPUI should include a rewrite of certain features: the DSpace JSP tag lib should not include html, beans and JSTL should be leveraged
instead. See comments regarding XMLUI/JSPUI consolidation above.

Spring WebMVC Java, Many View
Technologies
(JSP,FreeMarker,
Groovy, Thymeleaf
, etc)

 Yes Yes Dependent on
View technology

 Dependent
on View
technology

 Dependent
on View
technology

 Dependent
on View
technology

 Dependent on
Framework choices

 No Many java based
frameworks utilize
Spring MVC under
the hood,

 Personal opinions on Spring MVC Framework:

Mark Diggory : As a core technology of many of the frameworks below, Spring MVC has a strong uptake. As with many of the frameworks below, we are not necessarily locked into the view
technology choices for all our user base. We may set the stage for a migration to frameworks below by first adopting a practice of using Spring MVC in both the XMLUI and JSPUI. See
comments above in XMLUI
Chris Wilper : Having used Spring MVC on several projects, I've seen cases where it has driven a pure REST/HATEOAS API, as well as HTML-producing endpoints (backed by XSLT
transformation, velocity/freemarker templates, etc.). It has been around for quite a while and has a huge community behind it. A related project is , which looks a possible Spring Web Flow
alternative to Cocoon's webflow for orchestrating certain user tasks, currently used by XMLUI.
Bram Luyten (Atmire): On the view end, Thymeleaf is a popular XML/XHTML/HTML5 template engine. See also this article Spring MVC: from JSP and Tiles to Thymeleaf
Graham Triggs : On Thymeleaf, it's probably one of the nicest "designer friendly" templating engines. However, the price to be paid for that appears to be 2x slower performance compared to
Mustache or Freemarker. - it's worth considering who we really see as editing those templates as to whether they should be more http://www.slideshare.net/jreijn/comparing-templateenginesjvm
designer or developer friendly (with CSS for actual styling, I would lean towards the latter).

Play!
Framework

Java, Scala Yes, some major sites
use it according to Wikipe
dia

 Yes, can be used
with Bootstrap

 Yes Yes, has a mod
ules repository

 Personal opinions on Play Framework:

Graham Triggs I had a brief play with it a while ago. It's a neat technology, but has drawbacks in being more tailored to Scala than Java, and lacking documentation. It's also very dependent on
using the Play toolset, even though in the background it can use Maven to manage dependencies, there would be a lack of synergy between front end and back end development, which might
be an issue.

Spring Boot Java Not yet. It's still very new
(1.0.0 released in 2014).

However, the Spring IO
 itself is very platform

widely used, and Spring
Boot seems to have a lot
of activity on GitHub,
Stackoverflow, etc.

Note, Grails is part of the
Spring I/O application

 Yes, it's built as a r
apid development
friendly version of
Spring

Built on Spring,
so you can use
other Spring
projects

https://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks
http://demo.dspace.org/xmlui/
http://demo.dspace.org/xmlui/
https://cocoon.apache.org/
http://cocoon.apache.org/1365_1_1.html
http://cocoon.apache.org/1365_1_1.html
https://wiki.lyrasis.org/display/~tdonohue
https://wiki.lyrasis.org/display/~grahamtriggs
https://wiki.lyrasis.org/display/~mdiggory
https://github.com/DSpace/DSpace/blob/master/dspace-xmlui/src/main/java/org/dspace/app/xmlui/utils/AuthenticationUtil.java
https://github.com/DSpace/DSpace/blob/master/dspace-xmlui/src/main/java/org/dspace/app/xmlui/utils/RequestInfo.java
https://github.com/DSpace/DSpace/blob/master/dspace-xmlui/src/main/java/org/dspace/app/xmlui/utils/ContextUtil.java
https://github.com/DSpace/DSpace/blob/master/dspace-xmlui/src/main/java/org/dspace/app/xmlui/utils/HandleUtil.java
https://github.com/DSpace/DSpace/blob/master/dspace-jspui/src/main/java/org/dspace/app/webui/servlet/SubmissionController.java
https://github.com/DSpace/DSpace/blob/master/dspace-xmlui/src/main/java/org/dspace/app/xmlui/aspect/submission/FlowUtils.java
http://demo.dspace.org/jspui/
http://demo.dspace.org/jspui/
https://wiki.lyrasis.org/display/~tdonohue
https://wiki.lyrasis.org/display/~grahamtriggs
https://wiki.lyrasis.org/display/~mdiggory
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://www.thymeleaf.org/
https://wiki.lyrasis.org/display/~mdiggory
https://wiki.lyrasis.org/display/~cwilper
http://projects.spring.io/spring-webflow/
https://wiki.lyrasis.org/display/~bram
http://spring.io/blog/2012/10/30/spring-mvc-from-jsp-and-tiles-to-thymeleaf/
https://wiki.lyrasis.org/display/~grahamtriggs
http://www.slideshare.net/jreijn/comparing-templateenginesjvm
https://www.playframework.com/
https://www.playframework.com/
https://en.wikipedia.org/wiki/Play_framework#Usage
https://en.wikipedia.org/wiki/Play_framework#Usage
https://www.playframework.com/documentation/2.0/Tips
https://www.playframework.com/documentation/2.0/Tips
https://www.playframework.com/modules
https://www.playframework.com/modules
https://wiki.lyrasis.org/display/~grahamtriggs
http://projects.spring.io/spring-boot/
http://spring.io/
http://spring.io/
https://spring.io/platform
https://spring.io/platform
https://spring.io/blog/2013/08/06/spring-boot-simplifying-spring-for-everyone
https://spring.io/blog/2013/08/06/spring-boot-simplifying-spring-for-everyone
https://spring.io/blog/2013/08/06/spring-boot-simplifying-spring-for-everyone
https://spring.io/blog/2013/08/06/spring-boot-simplifying-spring-for-everyone

stack. Appears to run
directly on Boot in this
case.

 Personal opinions on Spring Boot:

Graham Triggs Initial tests are quite positive. Obviously integrates very well with the Spring ecosystem, yet you can easily create a 'standard' Maven project for the application. Uses many
templating engines (my preference is for Freemarker).
Mark Diggory Mostly a Spring runtime container, will support other views, does not directly addresses the two UI problem. Introduces a larger scale re-architecture project than just UI :
consolidation.
Tim Donohue : In about one day's time, I've built a basic "experiment" of Spring Boot + Thymeleaf + Bootstrap on DSpace (master). This was mostly just to "learn" Spring Boot, but I found it so
easy to work with that I was able to do a lot rapidly. The experiment itself is extremely basic (not a full fledged prototype). But it "works", and Spring Boot integrates "automatically" with our
existing Spring beans (no major re-architecture necessary, though we do it later on if we wanted). Code at https://github.com/tdonohue/DSpace/tree/spring-boot-ui/dspace-ui

Ruby on Rails Ruby Yes Yes, has a Rails
, plus Bootstrap app

many gems

 Yes Yes, in form of
Rails plugins &
Ruby gems

 Personal opinions on Ruby on Rails:

Graham Triggs Clean separation of front end and back end (via REST calls), will add latency and may cause problems for switching between front and back end development. Also, hosting
concerns (JRuby vs separate Ruby and Java containers)
Mark Diggory : Much more than a UI framework, opens the door to large questions concerning rewriting DSpace, takes us away from a single java technology stack

Hydra
Framework

Ruby on Rails,
Fedora, Blacklight

Not worldwide, but has a
growing following in
libraries, etc.

The base technology,
Ruby on Rails is widely
adopted

 Yes (well, Sufia
)uses Bootstrap

 Yes (uses
REST to
communicat
e with
Fedora)

Yes
(Blacklight)

Yes Yes, because
it's Ruby on
Rails, you often
can use Rails
plugins and/or
Ruby gems

Hydra doesn't
currently "work"
with DSpace.

It would likely be a
major endeavor to
either migrate
DSpace into a
"Hydra Head" web
application or "port"
Hydra as a UI on
top of DSpace's
underlying
architecture.

However, if we
decided on the
former (create a
DSpace-like Hydra
Head), there are
members of the
Hydra Community
who are currently
striving to do that
same thing.

 Personal opinions on Hydra:

Mark Diggory : Much more than a UI framework, in either case its a larger migration path and endeavor than consolidating DSpace onto a single UI technology. In either of the proposed cases it
does not solve the immediate need for a single UI.

Grails Groovy (based on
Java), Also
based on Spring
WebMVC

Yes, large number of sites
using Grails listed on
website

 Yes, has several
Bootstrap plugins

 Yes Yes Yes, has a plugi
ns repository

 Personal opinions on Grails:

Graham Triggs Pivotal (the main commercial developer) has recently announced that it is no longer sponsoring Groovy / Grails. This is apparently because of an increasing amount of community
support, however, it may point to concerns in the future.
Mark Diggory : Grails has its own DispatchServlet () Imuch like XMLUI did with Cocoon prior our modifications
To grok grails as quickly as possible its Ruby on Rails for Java: This means its more than a UI technology, we would be rewriting much of DSpace in the process. in Example of Grails application
three pages, you generate the entire application stack, from Hibernate to UI in several commands. Again, this leverages WebMVC and the UI technology shown in the example is Spring
WebMVC+JSP, but it supports other . Seems to be . However, IMO, we are back to rewriting core DSpace to implement DSpace view technologies like Grails Server Pages REST/AJAX friendly
as a Grails App.

JQuery UI Javascript Yes Yes, e.g. there is a
JQuery UI theme
for Bootstrap

 Yes Yes, has a plugi
n repository

Client side
JavaScript based
user interfaces ("sin
gle page web
applications"), often
have problems with
accessibility. It
might be good to
investigate how to
handle this prior to
selection.

 Personal opinions on JQuery UI:

 Mark Diggory : Does not address the Server side functionality that is needed to maintain use of this technology, I would exclude from list as a supporting library of functionality found in UI
 technology stacks in other technologies in this list.

Backbone.js

(Javascript with
RESTful JSON
interface &
Model-View-
Presenter)

Javascript Yes, large number of
major sites listed on Wikip

 & their homepageedia

 Yes, or at least you
can use it in
conjunction with

.Bootstrap

 Yes Yes Yes, has
 and plugins

extensions

Designed for
developing "single
page web

". It applications
could prove difficult
to use with DSpace
because of the
complexity of a
repository system.

Client side
JavaScript based
user interfaces ("sin
gle page web
applications"), often
have problems with
accessibility. It
might be good to
investigate how to
handle this prior to

 selection.

 Personal opinions on Backbone.js:

https://spring.io/platform
https://wiki.lyrasis.org/display/~grahamtriggs
https://wiki.lyrasis.org/display/~mdiggory
https://wiki.lyrasis.org/display/~tdonohue
https://github.com/tdonohue/DSpace/tree/spring-boot-ui/dspace-ui
http://rubyonrails.org/
https://github.com/RailsApps/rails-bootstrap
https://github.com/RailsApps/rails-bootstrap
https://wiki.lyrasis.org/display/~grahamtriggs
https://wiki.lyrasis.org/display/~mdiggory
http://projecthydra.org/
http://projecthydra.org/
http://www.rubydoc.info/gems/sufia/frames
http://www.rubydoc.info/gems/sufia/frames
https://wiki.lyrasis.org/display/~mdiggory
https://grails.org/
https://grails.org/websites
https://grails.org/websites
https://grails.org/websites
https://grails.org/plugins/tag/bootstrap
https://grails.org/plugins/tag/bootstrap
https://grails.org/plugins/
https://grails.org/plugins/
https://wiki.lyrasis.org/display/~grahamtriggs
https://wiki.lyrasis.org/display/~mdiggory
https://github.com/DSpace/DSpace/blame/master/dspace-xmlui/src/main/webapp/WEB-INF/web.xml#L218
http://www.springbyexample.org/examples/simple-grails-webapp.html
http://grails.github.io/grails-doc/latest/guide/theWebLayer.html
http://grails.github.io/grails-doc/latest/guide/theWebLayer.html#ajax
http://jqueryui.com/
https://github.com/jquery-ui-bootstrap/jquery-ui-bootstrap
https://github.com/jquery-ui-bootstrap/jquery-ui-bootstrap
https://plugins.jquery.com/
https://plugins.jquery.com/
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://wiki.lyrasis.org/display/~mdiggory
http://backbonejs.org/
https://en.wikipedia.org/wiki/Backbone.js
https://en.wikipedia.org/wiki/Backbone.js
http://coenraets.org/blog/2013/04/sample-application-with-backbone-js-and-twitter-bootstrap-updated-and-improved/
http://coenraets.org/blog/2013/04/sample-application-with-backbone-js-and-twitter-bootstrap-updated-and-improved/
http://coenraets.org/blog/2013/04/sample-application-with-backbone-js-and-twitter-bootstrap-updated-and-improved/
http://coenraets.org/blog/2013/04/sample-application-with-backbone-js-and-twitter-bootstrap-updated-and-improved/
http://backplug.io/
http://backplug.io/
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application

 Backbone is too low level imo. You still have to write a lot of boilerplate code yourself. We should probably replace it with one of the more modern JS MV* frameworks as Art Lowel (Atmire)
alternatives to ember js, like , or angular knockout react

 : a full suite of REST services would need to be present, questions would need to be answered Mark Diggory Does not address the Server side functionality that is needed for persistence,
regarding if workflows are managed as client side activities or server side activities.

Ember.js

(Client-side
Javascript web
application
using MVC)

Javascript Yes, see their list of users
on website

 Yes, can use in
conjunction with
Bootstrap, e.g. https
://indexiatech.
github.io/ember-
components/#
/overview

 Yes Yes Yes, there's an
"addon"
repository

Uses Grunt, Bower,
NPM (all of which
are also in use by
Mirage 2 theme)

Client side
JavaScript based
user interfaces ("sin
gle page web
applications"), often
have problems with
accessibility. It
might be good to
investigate how to
handle this prior to

 selection.

 Personal opinions on Ember.js:

 Ember is very "opinionated" which is great to guide you in to using best practices to solve common problems. But it can get tricky if you need to solve an uncommon problem Art Lowel (Atmire)
and you have to fight the system to make it work. However I'd like to add a +1 for ember.

 : Does not address the Server side functionality that is needed for persistence, a full suite of REST services would need to be present, questions would need to be answered Mark Diggory
regarding if workflows are managed as client side activities or server side activities.

Vaadin Java Unsure, their Community
 has a tagline which page

exhorts you to "join
150,000 devs"

Yes, they seem to
prioritize working
with plugins/addins,
and have a large
component
repository

Yes Yes Yes Yes Yes Yes, see their c
omponent
repository

Seems to have a
large community,
and many freely-
available learning

. Seems resources
a good fit for
existing DSpace
development
practices
(empahsis on
working with
Maven, plugins for
working in the
major IDEs), it has
a .free book

 Personal opinions on Vaadin:

https://wiki.lyrasis.org/display/~artlowel
https://angularjs.org/
http://knockoutjs.com/
http://facebook.github.io/react/
https://wiki.lyrasis.org/display/~mdiggory
http://emberjs.com/
http://emberjs.com/ember-users/
http://emberjs.com/ember-users/
https://indexiatech.github.io/ember-components/#/overview
https://indexiatech.github.io/ember-components/#/overview
https://indexiatech.github.io/ember-components/#/overview
https://indexiatech.github.io/ember-components/#/overview
https://indexiatech.github.io/ember-components/#/overview
http://www.emberaddons.com/
http://www.emberaddons.com/
http://www.emberaddons.com/
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://wiki.lyrasis.org/display/~artlowel
https://wiki.lyrasis.org/display/~mdiggory
https://vaadin.com
https://vaadin.com/community
https://vaadin.com/community
https://vaadin.com/directory
https://vaadin.com/directory
https://vaadin.com/directory
https://vaadin.com/directory
https://vaadin.com/directory
https://vaadin.com/directory
https://vaadin.com/learn
https://vaadin.com/learn
https://vaadin.com/book

	Brainstorms on a Future UI

