
DRI Schema Reference
Digital Repository Interface (DRI) is a schema that governs the structure of a Manakin DSpace page when encoded as an XML Document. It determines
what elements can be present in the Document and the relationship of those elements to each other. This reference document explains the purpose of
DRI, provides a broad architectural overview, and explains common design patterns. The appendix includes a complete reference for elements used in the
DRI Schema, a graphical representation of the element hierarchy, and a quick reference table of elements and attributes.

Table of Contents:

1 Introduction
1.1 The Purpose of DRI
1.2 The Development of DRI

2 DRI in Manakin
2.1 Themes
2.2 Aspect Chains

3 Common Design Patterns
3.1 Localization and Internationalization
3.2 Standard attribute triplet
3.3 Structure-oriented markup

4 Schema Overview
5 Merging of DRI Documents
6 Version Changes

6.1 Changes from 1.0 to 1.1
7 Element Reference

7.1 BODY
7.2 cell
7.3 div
7.4 DOCUMENT
7.5 field
7.6 figure
7.7 head
7.8 help
7.9 hi
7.10 instance
7.11 item
7.12 label
7.13 list
7.14 META
7.15 metadata
7.16 OPTIONS
7.17 p
7.18 pageMeta
7.19 params
7.20 reference
7.21 referenceSet
7.22 repository
7.23 repositoryMeta
7.24 row
7.25 table
7.26 trail
7.27 userMeta
7.28 value
7.29 xref

Introduction

This manual describes the Digital Repository Interface (DRI) as it applies to the DSpace digital repository and XMLUI Manakin based interface. DSpace
XML UI is a comprehensive user interface system. It is centralized and generic, allowing it to be applied to all DSpace pages, effectively replacing the JSP-
based interface system. Its ability to apply specific styles to arbitrarily large sets of DSpace pages significantly eases the task of adapting the DSpace look
and feel to that of the adopting institution. This also allows for several levels of branding, lending institutional credibility to the repository and collections.

Manakin, the second version of DSpace XML UI, consists of several components, written using Java, XML, and XSL, and is implemented in . Cocoon
Central to the interface is the XML Document, which is a semantic representation of a DSpace page. In Manakin, the XML Document adheres to a schema
called the Digital Repository Interface (DRI) Schema, which was developed in conjunction with Manakin and is the subject of this guide. For the remainder
of this guide, the terms XML Document, DRI Document, and Document will be used interchangeably.

This reference document explains the purpose of DRI, provides a broad architectural overview, and explains common design patterns. The appendix
includes a complete reference for elements used in the DRI Schema, a graphical representation of the element hierarchy, and a quick reference table of
elements and attributes.

The Purpose of DRI

DRI is a schema that governs the structure of the XML Document. It determines the elements that can be present in the Document and the relationship of
those elements to each other. Since all Manakin components produce XML Documents that adhere to the DRI schema, The XML Document serves as the
abstraction layer. Two such components, Themes and Aspects, are essential to the workings of Manakin and are described briefly in this manual.

http://cocoon.apache.org/

The Development of DRI

The DRI schema was developed for use in Manakin. The choice to develop our own schema rather than adapt an existing one came after a careful
analysis of the schema's purpose as well as the lessons learned from earlier attempts at customizing the DSpace interface. Since every DSpace page in
Manakin exists as an XML Document at some point in the process, the schema describing that Document had to be able to structurally represent all
content, metadata and relationships between different parts of a DSpace page. It had to be precise enough to avoid losing any structural information, and
yet generic enough to allow Themes a certain degree of freedom in expressing that information in a readable format.

Popular schemas such as XHTML suffer from the problem of not relating elements together explicitly. For example, if a heading precedes a paragraph, the
heading is related to the paragraph not because it is encoded as such but because it happens to precede it. When these structures are attempted to be
translated into formats where these types of relationships are explicit, the translation becomes tedious, and potentially problematic. More structured
schemas, like TEI or DocBook, are domain specific (much like DRI itself) and therefore not suitable for our purposes.

We also decided that the schema should natively support a metadata standard for encoding artifacts. Rather than encoding artifact metadata in structural
elements, like tables or lists, the schema would include artifacts as objects encoded in a particular standard. The inclusion of metadata in native format
would enable the Theme to choose the best method to render the artifact for display without being tied to a particular structure.

Ultimately, we chose to develop our own schema. We have constructed the DRI schema by incorporating other standards when appropriate, such as Coco
 for internationalization, , and the . The design of structural elements was on's i18n schema DCMI's Dublin Core Library of Congress's METS schema

derived primarily from , with some of the design patterns borrowed from other existing standards such as DocBook and XHTML. While the structural TEI
elements were designed to be easily translated into XHTML, they preserve the semantic relationships for use in more expressive languages.

DRI in Manakin

The general process for handling a request in DSpace XML UI consists of two parts. The first part builds the XML Document, and the second part stylizes
that Document for output. In Manakin, the two parts are not discrete and instead wrapped within two processes: Content Generation, which builds an XML
representation of the page, and Style Application, which stylizes the resulting Document. Content Generation is performed by Aspect chaining, while Style
Application is performed by a Theme.

Themes

A Theme is a collection of XSL stylesheets and supporting files like images, CSS styles, translations, and help documents. The XSL stylesheets are
applied to the DRI Document to covert it into a readable format and give it structure and basic visual formatting in that format. The supporting files are used
to provide the page with a specific look and feel, insert images and other media, translate the content, and perform other tasks. The currently used output
format is XHTML and the supporting files are generally limited to CSS, images, and JavaScript. More output formats, like PDF or SVG, may be added in
the future.

A DSpace installation running Manakin may have several Themes associated with it. When applied to a page, a Theme determines most of the page's look
and feel. Different themes can be applied to different sets of DSpace pages allowing for both variety of styles between sets of pages and consistency
within those sets. The xmlui.xconf configuration file determines which Themes are applied to which DSpace pages (see the XMLUI Configuration and

 section for more information on installing and configuring themes). Themes may be configured to apply to all pages of specific type, like Customization
browse-by-title, to all pages of a one particular community or collection or sets of communities and collections, and to any mix of the two. They can also be
configured to apply to a singe arbitrary page or handle.

Aspect Chains

Manakin Aspects are arrangements of Cocoon components (transformers, actions, matchers, etc) that implement a new set of coupled features for the
system. These Aspects are chained together to form all the features of Manakin. Five Aspects exist in the default installation of Manakin, each handling a
particular set of features of DSpace, and more can be added to implement extra features. All Aspects take a DRI Document as input and generate one as
output. This allows Aspects to be linked together to form an Aspect chain. Each Aspect in the chain takes a DRI Document as input, adds its own
functionality, and passes the modified Document to the next Aspect in the chain.

Common Design Patterns

There are several design patterns used consistently within the DRI schema. This section identifies the need for and describes the implementation of these
patterns. Three patterns are discussed: language and internationalization issues, standard attribute triplet (, , and), and the use of structure-id n rend
oriented markup.

Localization and Internationalization

Internationalization is a very important component of the DRI system. It allows content to be offered in other languages based on user's locale and
conditioned upon availability of translations, as well as present dates and currency in a localized manner. There are two types of translated content:
content stored and displayed by DSpace itself, and content introduced by the DRI styling process in the XSL transformations. Both types are handled by
Cocoon's i18n transformer without regard to their origin.

When the Content Generation process produces a DRI Document, some of the textual content may be marked up with elements to signify that i18n
translations are available for that content. During the Style Application process, the Theme can also introduce new textual content, marking it up with i18n
tags. As a result, after the Theme's XSL templates are applied to the DRI Document, the final output consists of a DSpace page marked up in the chosen
display format (like XHTML) with elements from both DSpace and XSL content. This final document is sent through Cocoon's i18n transformer that i18n
translates the marked up text.

Standard attribute triplet

http://cocoon.apache.org/2.1/userdocs/i18nTransformer.html
http://cocoon.apache.org/2.1/userdocs/i18nTransformer.html
http://dublincore.org/
http://www.loc.gov/standards/mets/
http://www.tei-c.org/index.xml
https://wiki.lyrasis.org/display/DSDOC6x/XMLUI+Configuration+and+Customization
https://wiki.lyrasis.org/display/DSDOC6x/XMLUI+Configuration+and+Customization

Many elements in the DRI system (all top-level containers, character classes, and many others) contain one or several of the three standard attributes: , id n
, and . The and attributes can be required or optional based on the element's purpose, while the attribute is always optional. The first two are rend id n rend
used for identification purposes, while the third is used as a display hint issued to the styling step.

Identification is important because it allows elements to be separated from their peers for sorting, special case rendering, and other tasks. The first
attribute, , is the global identifier and it is unique to the entire document. Any element that contains an attribute can thus be uniquely referenced by it. id id
The attribute of an element can be either assigned explicitly, or generated from the Java Class Path of the originating object if no name is given. While id
all elements that can be uniquely identified can carry the attribute, only those that are independent on their context are required to do so. For example, id
tables are required to have an id since they retain meaning regardless of their location in the document, while table rows and cells can omit the attribute
since their meaning depends on the parent element.

The name attribute is simply the name assigned to the element, and it is used to distinguish an element from its immediate peers. In the example of a n
particular list, all items in that list will have different names to distinguish them from each other. Other lists in the document, however, can also contain
items whose names will be different from each other, but identical to those in the first list. The attribute of an element is therefore unique only in the n
scope of that element's parent and is used mostly for sorting purposes and special rendering of a certain class of elements, like, for example, all first items
in lists, or all items named "browse". The attribute follows the same rules as id when determining whether or not it is required for a given element.n

The last attribute in the standard triplet is . Unlike and , the attribute can consist of several space delimited values and is optional for all rend id n rend
elements that can contain it. Its purpose is to provide a rendering hint from the middle layer component to the styling theme. How that hint is interpreted
and whether it is used at all when provided, is completely up the theme. There are several cases, however, where the content of the attribute is rend
outlined in detail and its use is encouraged. Those cases are the emphasis element , the division element , and the element. Please refer to the hi div list
Element Reference for more detail on these elements.

Structure-oriented markup

The final design pattern is the use of structure-oriented markup for content carried by the XML Document. Once generated by Cocoon, the Document
contains two major types of information: metadata about the repository and its contents, and the actual content of the page to be displayed. A complete
overview of metadata and content markup and their relationship to each other is given in the next section. An important thing to note here, however, is that
the markup of the content is oriented towards explicitly stating structural relationships between the elements rather than focusing on the presentational
aspects. This makes the markup used by the Document more similar to TEI or Docbook rather than HTML. For this reason, XSL templates are used by the
themes to convert structural DRI markup to XHTML. Even then, an attempt is made to create XHTML as structural as possible, leaving presentation
entirely to CSS. This allows the XML Document to be generic enough to represent any DSpace page without dictating how it should be rendered.

Schema Overview

The DRI XML Document consists of the root element document and three top-level elements that contain two major types of elements. The three top-level
containers are , , and . The two types of elements they contain are metadata and content, carrying metadata about the page and the meta body options
contents of the page, respectively. Figure 1 depicts the relationship between these six components.

Figure 1: The two content types across three major divisions of a DRI page.

The element is the root for all DRI pages and contains all other elements. It bears only one attribute, , that contains the version number document version
of the DRI system and the schema used to validate the produced document. At the time of writing the working version number is "1.1".

The element is a the top-level element under document and contains all metadata information about the page, the user that requested it, and the meta
repository it is used with. It contains no structural elements, instead being the only container of metadata elements in a DRI Document. The metadata
stored by the meta element is broken up into three major groups: , , and , each storing metadata information about their userMeta pageMeta objectMeta
respective component. Please refer to the reference entries for more information about these elements.

The element is another top-level element that contains all navigation and action options available to the user. The options are stored as items in list options
elements, broken up by the type of action they perform. The five types of actions are: browsing, search, language selection, actions that are always
available, and actions that are context dependent. The two action types also contain sub-lists that contain actions available to users of varying degrees of
access to the system. The element contains no metadata elements and can only make use of a small set of structural elements, namely the options list
element and its children.

The last major top-level element is the element. It contains all structural elements in a DRI Document, including the lists used by the element. body options
Structural elements are used to build a generic representation of a DSpace page. Any DSpace page can be represented with a combination of the
structural elements, which will in turn be transformed by the XSL templates into another format. This is the core mechanism that allows DSpace XML UI to
apply uniform templates and styling rules to all DSpace pages and is the fundamental difference from the JSP approach currently used by DSpace.

The element directly contains only one type of element: . The element serves as a major division of content and any number of them can be body div div
contained by the . Additionally, divisions are recursive, allowing to contain other . It is within these elements that all other structural elements body divs divs
are contained. Those elements include tables, paragraph elements , and lists, as well as their various children elements. At the lower levels of this p
hierarchy lie the character container elements. These elements, namely paragraphs , table , lists , and the emphasis element , contain the p cells items hi
textual content of a DSpace page, optionally modified with links, figures, and emphasis. If the division within which the character class is contained is
tagged as interactive (via the attribute), those elements can also contain interactive form fields. Divisions tagged as interactive must also interactive
provide and attributes for its fields to use.method action

Figure 2: All the elements in the DRI schema (version 1.1).

Merging of DRI Documents

Having described the structure of the DRI Document, as well as its function in Manakin's Aspect chains, we now turn our attention to the one last detail of
their use: merging two Documents into one. There are several situations where the need to merge two documents arises. In Manakin, for example, every
Aspect is responsible for adding different functionality to a DSpace page. Since every instance of a page has to be a complete DRI Document, each
Aspect is faced with the task of merging the Document it generated with the ones generated (and merged into one Document) by previously executed
Aspects. For this reason rules exist that describe which elements can be merged together and what happens to their data and child elements in the
process.

When merging two DRI Documents, one is considered to be the main document, and the other a feeder document that is added in. The three top level
containers (, and) of both documents are then individually analyzed and merged. In the case of the and elements, the meta body options options meta
children tags are taken individually as well and treated differently from their siblings.

The elements are the easiest to merge: their respective children are preserved along with their ordering and are grouped together under one body div
element. Thus, the new tag will contain all the of the main document followed by all the of the feeder. However, if two have the same body divs divs divs n
and attributes (and in case of an interactive the same and attributes as well), those will be merged into one. The resulting div rend div action method divs
will bear the , , and attributes of the main document's div and contain all the of the main document followed by all the of the feeder. This id n rend divs divs
process continues recursively until all the have been merged. It should be noted that two divisions with separate pagination rules cannot be merged divs
together.

Merging the elements is somewhat different. First, elements under of both documents are compared with each other. Those unique to options list options
either document are simply added under the new options element, just like under . In case of duplicates, that is elements that belong to both divs body list
documents and have the same attribute, the two will be merged into one. The new element will consist of the main document's head element, n lists list
followed pairs from the main document, and then finally the pairs of the feeder, provided they are different from those of the main.label-item label-item

Finally, the elements are merged much like the elements under body. The three children of - , , and - are meta meta userMeta pageMeta objectMeta
individually merged, adding the contents of the feeder after the contents of the main.

Version Changes

The DRI schema will continue to evolve overtime as the needs of interface design require. The version attribute on the document will indicate which
version of the schema the document conforms to. At the time Manakin was incorporated into the standard distribution of DSpac the current version was
"1.1", however earlier versions of the Manakin interface may use "1.0".

Changes from 1.0 to 1.1

There were major structural changes between these two version numbers. Several elements were removed from the schema: , , includeSet include objectMeta
, and . Originally all metadata for objects were included in-line with the DRI document, this proved to have several problems and has been removed object
in version 1.1 of the DRI schema. Instead of including metadata in-line, external references to the metadata is included. Thus, a element has reference
been added along with . These new elements operate like their counterparts in the previous version except refrencing metadata contained on referenceSet
the element they reference metadata in external files. The and elements were alse modified in a similar manner objectMeta repository repositoryMeta
removing in-line metadata and refrencing external metadata documents.

Element Reference

Element Attributes Required?

BODY

cell

 cols

 id

 n

 rend

 role

 rows

div

 action required for interactive
behavior

 behaviorSensitivField
s

 currentPage

 firstItemIndex

 id required

 interactive

 itemsTotal

 lastItemIndex

 method required for interactive

 n required

 nextPage

 pagesTotal

 pageURLMask

 pagination

 previousPage

 rend

DOCUMENT version required

field

 disabled

 id required

 n required

 rend

 required

 type required

figure

 rend

 source

 target

head

 id

 n

 rend

help

hi rend required

instance

item

 id

 n

 rend

label

 id

 n

 rend

list

 id required

 n required

 rend

 type

META

metadata

 element required

 language

 qualifier

OPTIONS

p

 id

 n

 rend

pageMeta

params

 cols

 maxlength

 multiple

 operations

 rows

 size

reference

 url required

 repositoryID required

 type

referenceSet

 id required

 n required

 orderBy

 rend

 type required

repository

 repositoryID required

 url required

repositoryMet
a

row

 id

 n

 rend

 role required

table

 cols required

 id required

 n required

 rend

 rows required

trail

 rend

 target

userMeta authenticated required

value

 optionSelected

 optionValue

 type required

xref target required

BODY

Top-Level Container

The element is the main container for all content displayed to the user. It contains any number of elements that group content into interactive and body div
display blocks.

Parent

document

Children

div (any)

Attributes

None

<document version=1.0>
 <meta> ... </meta>
 <body>
 <div n="division-example1"
 id="XMLExample.div.division-example1">
 ...
 </div>
 <div n="division-example2" id="XMLExample.div.division-example2"
 interactive="yes" action="www.DRItest.com"
 method="post">
 ...
 </div>
 ...
 </body>
 <options> ... </options>
</document>

cell

Rich Text Container

Structural Element

The element contained in a of a carries content for that table. It is a character container, just like , , and , and its primary purpose is to cell row table p item hi
display textual data, possibly enhanced with hyperlinks, emphasized blocks of text, images and form fields. Every can be annotated with a (the cell role
most common being "header" and "data") and can stretch across any number of rows and columns. Since cells cannot exist outside their container, , row
their attribute is optional.id

Parent

row

Children

hi (any)
xref (any)
figure (any)
field (any)

Attributes

cols: (optional) The number of columns the cell spans.
id: (optional) A unique identifier of the element.
n: (optional) A local identifier used to differentiate the element from its siblings.
rend: (optional) A rendering hint used to override the default display of the element.
role: (optional) An optional attribute to override the containing row's role settings.
rows: (optional) The number of rows the cell spans.

<table n="table-example" id="XMLExample.table.table-example" rows="2"
 cols="3">
 <row role="head">
 <cell cols="2">Data Label One and Two</cell> <cell>Data Label
 Three</cell>
 ...
 </row>
 <row>
 <cell> Value One </cell> <cell> Value Two </cell> <cell> Value
 Three </cell>
 ...
 </row>
 ...
</table>

div

Structural Element

The element represents a major section of content and can contain a wide variety of structural elements to present that content to the user. It can div
contain paragraphs, tables, and lists, as well as references to artifact information stored in , , , and . The artifactMeta repositoryMeta collections communities

 element is also recursive, allowing it to be further divided into other divs. Divs can be of two types: interactive and static. The two types are set by the div
use of the attribute and differ in their ability to contain interactive content. Children elements of divs tagged as interactive can contain form interactive
fields, with the and attributes of the serving to resolve those fields.action method div

Parent

body
div

Children

head (zero or one)
pagination (zero or one)
table (any)
p (any)
referenceSet (any)
list (any)
div (any)

Attributes

action: (required for interactive) The form action attribute determines where the form information should be sent for processing.
behavior: (optional for interactive) The acceptable behavior options that may be used on this form. The only possible value defined at this time is
"ajax" which means that the form may be submitted multiple times for each individual field in this form. Note that if the form is submitted multiple
times it is best for the behaviorSensitiveFields to be updated as well.
behaviorSensitiveFields: (optional for interactive) A space separated list of field names that are sensitive to behavior. These fields must be
updated each time a form is submitted with out a complete refresh of the page (i.e. ajax).
currentPage: (optional) For paginated divs, the currentPage attribute indicates the index of the page currently displayed for this div.
firstItemIndex: (optional) For paginated divs, the firstItemIndex attribute indicates the index of the first item included in this div.
id: (required) A unique identifier of the element.
interactive: (optional) Accepted values are "yes", "no". This attribute determines whether the div is interactive or static. Interactive divs must
provide action and method and can contain field elements.
itemsTotal: (optional) For paginated divs, the itemsTotal attribute indicates how many items exit across all paginated divs.
lastItemIndex: (optional) For paginated divs, the lastItemIndex attribute indicates the index of the last item included in this div.
method: (required for interactive) Accepted values are "get", "post", and "multipart". Determines the method used to pass gathered field values to
the handler specified by the action attribute. The multipart method should be used for uploading files.
n: (required) A local identifier used to differentiate the element from its siblings.
nextPage: (optional) For paginated divs the nextPage attribute points to the URL of the next page of the div, if it exists.
pagesTotal: (optional) For paginated divs, the pagesTotal attribute indicates how many pages the paginated divs spans.
pageURLMask: (optional) For paginated divs, the pageURLMask attribute contains the mask of a url to a particular page within the paginated set.
The destination page's number should replace the {pageNum} string in the URL mask to generate a full URL to that page.
pagination: (optional) Accepted values are "simple", "masked". This attribute determines whether the div is spread over several pages. Simple
paginated divs must provide previousPage, nextPage, itemsTotal, firstItemIndex, lastItemIndex attributes. Masked paginated divs must provide
currentPage, pagesTotal, pageURLMask, itemsTotal, firstItemIndex, lastItemIndex attributes.
previousPage: (optional) For paginated divs the previousPage attribute points to the URL of the previous page of the div, if it exists.
rend: (optional) A rendering hint used to override the default display of the element. In the case of the div tag, it is also encouraged to label it as
either "primary" or "secondary". Divs marked as primary contain content, while secondary divs contain auxiliary information or supporting fields.

<body>
 <div n="division-example"
 id="XMLExample.div.division-example">
 <head> Example Division </head>
 <p> This example shows the use of divisions. </p>
 <table ...>
 ...
 </table>
 <referenceSet ...>
 ...
 </referenceSet>
 <list ...>
 ...
 </list>
 <div n="sub-division-example"
 id="XMLExample.div.sub-division-example">
 <p> Divisions may be nested </p>
 ...
 </div>
 ...
 </div>
 ...
</body>

DOCUMENT

Document Root

The document element is the root container of an XML UI document. All other elements are contained within it either directly or indirectly. The only
attribute it carries is the version of the Schema to which it conforms.

Parent

none

Children

meta (one)
body (one)
options (one)

Attributes

version: (required) Version number of the schema this document adheres to. At the time of writing the only valid version numbers are "1.0" or
"1.1". Future iterations of this schema may increment the version number.

 <document
 version="1.1">
 <meta>
 ...
 </meta>
 <body>
 ...
 </body>
 <options>
 ...
 </options>
 </document>

field

Text Container

Structural Element

The element is a container for all information necessary to create a form field. The required attribute determines the type of the field, while the field type
children tags carry the information on how to build it. Fields can only occur in divisions tagged as "interactive".

Parent

cell
p
hi
item

Children

params (one)
help (zero or one)
error (any)
option (any - only with the select type)
value (any - only available on fields of type: select, checkbox, or radio)
field (one or more - only with the composite type)
valueSet (any)

Attributes

disabled: (optional) Accepted values are "yes", "no". Determines whether the field allows user input. Rendering of disabled fields may vary with
implementation and display media.
id: (required) A unique identifier for a field element.
n: (required) A non-unique local identifier used to differentiate the element from its siblings within an interactive division. This is the name of the
field use when data is submitted back to the server.
rend: (optional) A rendering hint used to override the default display of the element.
required: (optional) Accepted values are "yes", "no". Determines whether the field is a required component of the form and thus cannot be left
blank.
type: (required) A required attribute to specify the type of value. Accepted types are:

button: A button input control that when activated by the user will submit the form, including all the fields, back to the server for
processing.
checkbox: A boolean input control which may be toggled by the user. A checkbox may have several fields which share the same name
and each of those fields may be toggled independently. This is distinct from a radio button where only one field may be toggled.
file: An input control that allows the user to select files to be submitted with the form. Note that a form which uses a file field must use
the multipart method.
hidden: An input control that is not rendered on the screen and hidden from the user.
password: A single-line text input control where the input text is rendered in such a way as to hide the characters from the user.
radio: A boolean input control which may be toggled by the user. Multiple radio button fields may share the same name. When this
occurs only one field may be selected to be true. This is distinct from a checkbox where multiple fields may be toggled.
select: A menu input control which allows the user to select from a list of available options.
text: A single-line text input control.
textarea: A multi-line text input control.
composite: A composite input control combines several input controls into a single field. The only fields that may be combined together
are: checkbox, password, select, text, and textarea. When fields are combined together they can posses multiple combined values.

<p>
 <hi> ... </hi>
 <xref> ... </xref>
 <figure> ... </figure>
 ...
 <field id="XMLExample.field.name" n="name" type="text"
 required="yes">
 <params size="16" maxlength="32"/>
 <help>Some help text with <i18n>localized
 content</i18n>.</help>
 <value type="raw">Default value goes
 here</value>
 </field>
</p>

figure

Text Container

Structural Element

The element is used to embed a reference to an image or a graphic element. It can be mixed freely with text, and any text within the tag itself will be figure
used as an alternative descriptor or a caption.

Parent

cell
p

hi
item

Children

none

Attributes

rend: (optional) A rendering hint used to override the default display of the element.
source: (optional) The source for the image, using either a URL or a pre-defined XML entity.
target: (optional) A target for an image used as a link, using either a URL or an id of an existing element as a destination.

<p>
 <hi> ... </hi>
 ...
 <xref> ... </xref>
 ...
 <field> ... </field>
 ...
 <figure source="www.example.com/fig1"> This is a static image.
 </figure> <figure source="www.example.com/fig1"
 target="www.example.net">
 This image is also a link.
 </figure>
 ...
</p>

head

Text Container

Structural Element

The element is primarily used as a label associated with its parent element. The rendering is determined by its parent tag, but can be overridden by head
the attribute. Since there can only be one element associated with a particular tag, the attribute is not needed, and the attribute is optional.rend head n id

Parent

div
table
list
referenceSet

Children

none

Attributes

id: (optional) A unique identifier of the element
n: (optional) A local identifier used to differentiate the element from its siblings
rend: (optional) A rendering hint used to override the default display of the element.

<div ...>
 <head> This is a simple header associated with its div element.
 </head>
 <div ...>
 <head rend="green"> This header will be green.
 </head>
 <p>
 <head> A header with <i18n>localized content</i18n>.
 </head>
 ...
 </p>
 </div>
 <table ...>
 <head> ...
 </head>
 ...
 </table>
 <list ...>
 <head> ...
 </head>
 ...
 </list>
 ...
</body>

help

Text Container

Structural Element

The optional element is used to supply help instructions in plain text and is normally contained by the element. The method used to render the help field
help text in the target markup is up to the theme.

Parent

field

Children

none

Attributes

None

<p>
 <hi> ... </hi>
 ...
 <xref> ... </xref>
 ...
 <figure> ... </figure>
 ...
 <field id="XMLExample.field.name" n="name" type="text"
 required="yes">
 <params size="16" maxlength="32" />
 <help>Some help text with <i18n>localized
 content</i18n>.</help>
 </field>
 ...
</p>

hi

Rich Text Container

Structural Element

The element is used for emphasis of text and occurs inside character containers like and item. It can be mixed freely with text, and any text within hi p list
the tag itself will be emphasized in a manner specified by the required attribute. Additionally, element is the only text container component that is a rend hi
rich text container itself, meaning it can contain other tags in addition to plain text. This allows it to contain other text containers, including other tags.hi

Parent

cell
p
item
hi

Children

hi (any)
xref (any)
figure (any)
field (any)

Attributes

rend: (required) A required attribute used to specify the exact type of emphasis to apply to the contained text. Common values include but are not
limited to "bold", "italic", "underline", and "emph".

<p>
 This text is normal, while <hi rend="bold">this text is bold and
 this text is <hi rend="italic">bold and
 italic.</hi></hi>
</p>

instance

Structural Element

The element contains the value associated with a form field's multiple instances. Fields encoded as an instance should also include the values of instance
each instance as a hidden field. The hidden field should be appended with the index number for the instance. Thus if the field is "firstName" each instance
would be named "firstName_1", "firstName_2", "firstName_3", etc...

Parent

field

Children

value

Attributes

None listed yet.

Example needed.

item

Rich Text Container

Structural Element

The element is a rich text container used to display textual data in a list. As a rich text container it can contain hyperlinks, emphasized blocks of text, item
images and form fields in addition to plain text.

The element can be associated with a label that directly precedes it. The Schema requires that if one in a has an associated , then all item item list label
other items must have one as well. This mitigates the problem of loose connections between elements that is commonly encountered in XHTML, since
every item in particular list has the same structure.

Parent

list

Children

hi (any)
xref (any)
figure (any)
field (any)
list (any)

Attributes

id: (optional) A unique identifier of the element
n: (optional) A non-unique local identifier used to differentiate the element from its siblings
rend: (optional) A rendering hint used to override the default display of the element.

<list n="list-example"
 id="XMLExample.list.list-example">
 <head> Example List </head>
 <item> This is the first item
 </item> <item> This is the second item with <hi ...>highlighted text</hi>,
 <xref ...> a link</xref> and an <figure
 ...>image</figure>.</item>
 ...
 <list n="list-example2"
 id="XMLExample.list.list-example2">
 <head> Example List </head>
 <label>ITEM ONE:</label>
 <item> This is the first item
 </item>
 <label>ITEM TWO:</label>
 <item> This is the second item with <hi ...>highlighted
 text</hi>, <xref ...> a link</xref> and an <figure
 ...>image</figure>.</item>
 <label>ITEM THREE:</label>
 <item> This is the third item with a <field ...> ... </field>
 </item>
 ...
 </list>
 <item> This is the third item in the list
 </item>
 ...
</list>

label

Text Container

Structural Element

The element is associated with an item and annotates that item with a number, a textual description of some sort, or a simple bullet.label

Parent

item

Children

none

Attributes

id: (optional) A unique identifier of the element
n: (optional) A local identifier used to differentiate the element from its siblings
rend: (optional) An optional rend attribute provides a hint on how the label should be rendered, independent of its type.

<list n="list-example"
 id="XMLExample.list.list-example">
 <head>Example List</head>
 <label>1</label>
 <item> This is the first item </item>
 <label>2</label>
 <item> This is the second item with <hi ...>highlighted text</hi>,
 <xref ...> a link</xref> and an <figure
 ...>image</figure>.</item>
 ...
 <list n="list-example2"
 id="XMLExample.list.list-example2">
 <head>Example Sublist</head>
 <label>ITEM
 ONE:</label>
 <item> This is the first item </item>
 <label>ITEM
 TWO:</label>
 <item> This is the second item with <hi ...>highlighted
 text</hi>, <xref ...> a link</xref> and an <figure
 ...>image</figure>.</item>
 <label>ITEM
 THREE:</label>
 <item> This is the third item with a <field ...> ... </field>
 </item>
 ...
 </list>
 <item> This is the third item in the list </item>
 ...
</list>

list

Structural Element

The element is used to display sets of sequential data. It contains an optional element, as well as any number of and elements. list head item list Items
contain textual information, while sublists contain other or elements. An can also be associated with a element that annotates an item item list item label
with a number, a textual description of some sort, or a simple bullet. The list type (ordered, bulleted, gloss, etc.) is then determined either by the content of l

 on or by an explicit value of the attribute. Note that if are used in conjunction with any in a list, all of the in that list must abels items type labels items items
have a . It is also recommended to avoid mixing styles unless an explicit type is specified.label label

Parent

div
list

Children

head (zero or one)
label (any)
item (any)
list (any)

Attributes

id: (required) A unique identifier of the element
n: (required) A local identifier used to differentiate the element from its siblings
rend: (optional) An optional rend attribute provides a hint on how the list should be rendered, independent of its type. Common values are but not
limited to:

alphabet: The list should be rendered as an alphabetical index
columns: The list should be rendered in equal length columns as determined by the theme.
columns2: The list should be rendered in two equal columns.
columns3: The list should be rendered in three equal columns.
horizontal: The list should be rendered horizontally.
numeric: The list should be rendered as a numeric index.
vertical: The list should be rendered vertically.

type: (optional) An optional attribute to explicitly specify the type of list. In the absence of this attribute, the type of a list will be inferred from the
presence and content of labels on its items. Accepted values are:

form: Used for form lists that consist of a series of fields.
bulleted: Used for lists with bullet-marked items.

gloss: Used for lists consisting of a set of technical terms, each marked with a element and accompanied by the definition marked label
as an element.item
ordered: Used for lists with numbered or lettered items.
progress: Used for lists consisting of a set of steps currently being performed to accomplish a task. For this type to apply, each in item
the list should represent a step and be accompanied by a that contains the displayable name for the step. The contains an label item xref
that references the step. Also the attribute on the element should be: "available" (meaning the user may jump to the step using rend item
the provided), "unavailable" (the user has not meet the requirements to jump to the step), or "current" (the user is currently on the xref
step)
simple: Used for lists with items not marked with numbers or bullets.

<div ...>
 ...
 <list n="list-example"
 id="XMLExample.list.list-example">
 <head>Example List</head>
 <item> ... </item>
 <item> ... </item>
 ...
 <list n="list-example2"
 id="XMLExample.list.list-example2">
 <head>Example Sublist</head>
 <label> ... </label>
 <item> ... </item>
 <label> ... </label>
 <item> ... </item>
 <label> ... </label>
 <item> ... </item>
 ...
 </list>
 <label> ... </label>
 <item> ... </item>
 ...
 </list>
</div>

META

Top-Level Container

The element is a top level element and exists directly inside the element. It serves as a container element for all metadata associated with meta document
a document broken up into categories according to the type of metadata they carry.

Parent

document

Children

userMeta (one)
pageMeta (one)
repositoryMeta (one)

Attributes

None

<document version=1.0>
 <meta>
 <userMeta> ... </userMeta>
 <pageMeta> ... </pageMeta>
 <repositoryMeta> ... </repositoryMeta>
 </meta>
 <body> ... </body>
 <options> ... </options>
</document>

metadata

Text Container

Structural Element

The element carries generic metadata information in the form on an attribute-value pair. The type of information it contains is determined by two metadata
attributes: , which specifies the general type of metadata stored, and an optional attribute that narrows the type down. The standard element qualifier
representation for this pairing is element.qualifier. The actual metadata is contained in the text of the tag itself. Additionally, a attribute can be language
used to specify the language used for the metadata entry.

Parent

userMeta
pageMeta

Children

none

Attributes

element: (required) The name of a metadata field.
language: (optional) An optional attribute to specify the language used in the metadata tag.
qualifier: (optional) An optional postfix to the field name used to further differentiate the names.

<meta>
 <userMeta>
 <metadata element="identifier" qualifier="firstName"> Bob
 </metadata> <metadata element="identifier" qualifier="lastName"> Jones
 </metadata> <metadata ...> ...
 </metadata>
 ...
 </userMeta>
 <pageMeta>
 <metadata element="rights"
 qualifier="accessRights">user</metadata> <metadata ...> ...
 </metadata>
 ...
 </pageMeta>
</meta>

OPTIONS

Top-Level Container

The element is the main container for all actions and navigation options available to the user. It consists of any number of elements whose options list
items contain navigation information and actions. While any list of navigational options may be contained in this element, it is suggested that at least the
following 5 lists be included.

Parent

document

Children

list (any)

Attributes

None

<document version=1.0>

 <meta> ... </meta>

 <body> ... </body>

 <options>

 <list n="navigation-example1"
 id="XMLExample.list.navigation-example1">

 <head>Example Navigation List 1</head>

 <item><xref target="/link/to/option">Option
 One</xref></item>

 <item><xref target="/link/to/option">Option
 two</xref></item>

 ...

 </list>

 <list n="navigation-example2"
 id="XMLExample.list.navigation-example2">

 <head>Example Navigation List 2</head>

 <item><xref target="/link/to/option">Option
 One</xref></item>

 <item><xref target="/link/to/option">Option
 two</xref></item>

 ...

 </list>

 ...

 </options>

</document>

p

Rich Text Container

Structural Element

The element is a rich text container used by to display textual data in a paragraph format. As a rich text container it can contain hyperlinks, p divs
emphasized blocks of text, images and form fields in addition to plain text.

Parent

div

Children

hi (any)
xref (any)
figure (any)
field (any)

Attributes

id: (optional) A unique identifier of the element.
n: (optional) A local identifier used to differentiate the element from its siblings.
rend: (optional) A rendering hint used to override the default display of the element.

<div n="division-example"
 id="XMLExample.div.division-example">

 <p> This is a regular paragraph.
 </p> <p> This text is normal, while <hi rend="bold">this text is bold
 and this text is <hi rend="italic">bold and italic.</hi></hi>
 </p> <p> This paragraph contains a <xref
 target="/link/target">link</xref>, a static <figure
 source="/image.jpg">image</figure>, and a <figure target=
 "/link/target" source="/image.jpg">image link.</figure>
 </p>

</div>

pageMeta

Metadata Element

The element contains metadata associated with the document itself. It contains generic elements to carry the content, and any pageMeta metadata
number of elements to provide information on the user's current location in the system. Required and suggested values for elements trail metadata
contained in include but are not limited to:pageMeta

browser (suggested): The user's browsing agent as reported to server in the HTTP request.
browser.type (suggested): The general browser family as derived form the browser metadata field. Possible values may include "MSIE" (for
Microsoft Internet Explorer), "Opera" (for the Opera browser), "Apple" (for Apple web kit based browsers), "Gecko" (for Netscape, Mozilla, and
Firefox based browsers), or "Lynx" (for text based browsers).
browser.version (suggested): The browser version as reported by HTTP Request.
contextPath (required): The base URL of the Digital Repository system.
redirect.time (suggested): The time that must elapse before the page is redirected to an address specified by the redirect.url element.metadata
redirect.url (suggested): The URL destination of a redirect page
title (required): The title of the document/page that the user currently browsing.

See the and tag entries for more information on their structure.metadata trail

Parent

meta

Children

metadata (any)
trail (any)

Attributes

None

<meta>

 <userMeta> ... </userMeta>

 <pageMeta>

 <metadata element="title">Example DRI
 page</metadata>

 <metadata
 element="contextPath">/xmlui/</metadata>

 <metadata ...> ... </metadata>

 ...

 <trail source="123456789/6"> A bread crumb item
 </trail>

 <trail ...> ... </trail>

 ...

 </pageMeta>

</meta>

params

Structural Component

The element identifies extra parameters used to build a form field. There are several attributes that may be available for this element depending on params
the field type.

Parent

field

Children

none

Attributes

cols: (optional) The default number of columns that the text area should span. This applies only to textarea field types.
maxlength: (optional) The maximum length that the theme should accept for form input. This applies to text and password field types.
multiple: (optional) yes/no value. Determine if the field can accept multiple values for the field. This applies only to select lists.
operations: (optional) The possible operations that may be preformed on this field. The possible values are "add" and/or "delete". If both
operations are possible then they should be provided as a space separated list. The "add" operations indicates that there may be multiple values
for this field and the user may add to the set one at a time. The front-end should render a button that enables the user to add more fields to the
set. The button must be named the field name appended with the string "_add", thus if the field's name is "firstName" the button must be called
"firstName_add".The "delete" operation indicates that there may be multiple values for this field each of which may be removed from the set. The
front-end should render a checkbox by each field value, except for the first, The checkbox must be named the field name appended with the
string "_selected", thus if the field's name is "firstName" the checkbox must be called "firstName_selected" and the value of each successive
checkbox should be the field name. The front-end must also render a delete button. The delete button name must be the field's name appended
with the string "_delete".
rows: (optional) The default number of rows that the text area should span. This applies only to textarea field types.
size: (optional) The default size for a field. This applies to text, password, and select field types.

<p>

 <field id="XMLExample.field.name" n="name" type="text"
 required="yes">

 <params size="16"
 maxlength="32"/>

 <help>Some help text with <i18n>localized
 content</i18n>.</help>

 <default>Default value goes here</default>

 </field>

</p>

reference

Metadata Reference Element

reference is a reference element used to access information stored in an external metadata file. The attribute is used to locate the external metadata url
file. The attribute provides a short limited description of the referenced object's type.type

reference elements can be both contained by elements and contain themselves, making the structure recursive.includeSet includeSets

Parent

referenceSet

Children

referenceSet (zero or more)

Attributes

url: (required) A url to the external metadata file.
repositoryIdentifier: (required) A reference to the repositoryIdentifier of the repository.
type: (optional) Description of the reference object's type.

 <includeSet n="browse-list"
 id="XMLTest.includeSet.browse-list">
 <reference url="/metadata/handle/123/4/mets.xml"
 repositoryID="123" type="DSpace
 Item"/> <reference url="/metadata/handle/123/5/mets.xml"
 repositoryID="123" />

 ...
 </includeSet>

referenceSet

Metadata Reference Element

The element is a container of artifact or repository references.referenceSet

Parent

div
reference

Children

head (zero or one)
reference (any)

Attributes

id: (required) A unique identifier of the element
n: (required) Local identifier used to differentiate the element from its siblings
orderBy: (optional) A reference to the metadata field that determines the ordering of artifacts or repository objects within the set. When the Dublin
Core metadata scheme is used this attribute should be the element.qualifier value that the set is sorted by. As an example, for a browse by title
list, the value should be sortedBy=title, while for browse by date list it should be sortedBy=date.created
rend: (optional) A rendering hint used to override the default display of the element.
type: (required) Determines the level of detail for the given metadata. Accepted values are:

summaryList: Indicates that the metadata from referenced artifacts or repository objects should be used to build a list representation
that is suitable for quick scanning.
summaryView: Indicates that the metadata from referenced artifacts or repository objects should be used to build a partial view of the
referenced object or objects.
detailList: Indicates that the metadata from referenced artifacts or repository objects should be used to build a list representation that
provides a complete, or near complete, view of the referenced objects. Whether such a view is possible or different from summaryView
depends largely on the repository at hand and the implementing theme.
detailView: Indicates that the metadata from referenced artifacts or repository objects should be used to display complete information
about the referenced object. Rendering of several references included under this type is up to the theme.

 <div ...>
 <head> Example Division </head>
 <p> ... </p>
 <table> ... </table>
 <list>
 ...
 </list>
 <referenceSet n="browse-list"
 id="XMLTest.referenceSet.browse-list" type="summaryView"
 informationModel="DSpace">
 <head>A header for the includeset</head>
 <reference
 url="/metadata/handle/123/34/mets.xml"/>
 <reference
 url=""metadata/handle/123/34/mets.xml/>
 </referenceSet>
 ...
 </p>

repository

Metadata Element

The element is used to describe the repository. Its principal component is a set of structural metadata that carrier information on how the repository
repository's objects under are related to each other. The principal method of encoding these relationships at the time of this writing is a METS objectMeta
document, although other formats, like RDF, may be employed in the future.

Parent

repositoryMeta

Children

none

Attributes

repositoryID: requiredA unique identifier assigned to a repository. It is referenced by the element to signify the repository that assigned its object
identifier.
url: requiredA url to the external METS metadata file for the repository.

<repositoryMeta>

 <repository repositoryID="123456789"
 url="/metadata/handle/1234/4/mets.xml" />

</repositoryMeta>

repositoryMeta

Metadata Element

The element contains metadata references about the repositories used in the used or referenced in the document. It can contain any repositoryMeta
number of elements.repository

See the tag entry for more information on the structure of elements.repository repository

Parent

Meta

Children

repository (any)

Attributes

None

<meta>

 <userMeta> ... </usermeta>

 <pageMeta> ... </pageMeta>

 <repositoryMeta>

 <repository repositoryIID="..." url="..."
 />

 </repositoryMeta>

</meta>

row

Structural Element

The row element is contained inside a and serves as a container of elements. A required attribute determines how the row and its cells are table cell role
rendered.

Parent

table

Children

cell (any)

Attributes

id: (optional) A unique identifier of the element

n: (optional) A local identifier used to differentiate the element from its siblings
rend: (optional) A rendering hint used to override the default display of the element.
role: (required) Indicates what kind of information the row carries. Possible values include "header" and "data".

<table n="table-example" id="XMLExample.table.table-example" rows="2"
 cols="3">

 <row
 role="head">

 <cell cols="2">Data Label One and
 Two</cell>

 <cell>Data Label Three</cell>

 ...

 </row> <row>

 <cell> Value One </cell>

 <cell> Value Two </cell>

 <cell> Value Three </cell>

 ...

 </row>

 ...

</table>

table

Structural Element

The element is a container for information presented in tabular format. It consists of a set of elements and an optional .table row header

Parent

div

Children

head (zero or one)
row (any)

Attributes

cols: (required) The number of columns in the table.
id: (required) A unique identifier of the element
n: (required) A local identifier used to differentiate the element from its siblings
rend: (optional) A rendering hint used to override the default display of the element.
rows: (required) The number of rows in the table.

<div n="division-example"
 id="XMLExample.div.division-example">

 <table n="table1" id="XMLExample.table.table1" rows="2"
 cols="3">

 <row role="head">

 <cell cols="2">Data Label One and
 Two</cell>

 <cell>Data Label Three</cell>

 ...

 </row>

 <row>

 <cell> Value One </cell>

 <cell> Value Two </cell>

 <cell> Value Three </cell>

 ...

 </row>

 ...

 </table>
 ...
</div>

trail

Text Container

Metadata Element

The element carries information about the user's current location in the system relative of the repository's root page. Each instance of the element trail
serves as one link in the path from the root to the current page.

Parent

pageMeta

Children

none

Attributes

rend: (optional) A rendering hint used to override the default display of the element.
target: (optional) An optional attribute to specify a target URL for a trail element serving as a hyperlink. The text inside the element will be used as
the text of the link.

<pageMeta>

 <metadata element="title">Example DRI
 page</metadata>

 <metadata
 element="contextPath">/xmlui/</metadata>

 <metadata ...> ... </metadata>

 ...

 <trail target="/myDSpace"> A bread crumb item pointing to a
 page. </trail> <trail ...> ... </trail>

 ...

</pageMeta>

userMeta

Metadata Element

The element contains metadata associated with the user that requested the document. It contains generic elements, which in turn userMeta metadata
carry the information. Required and suggested values for elements contained in include but not limited to:metadata userMeta

identifier (suggested): A unique identifier associated with the user.
identifier.email (suggested): The requesting user's email address.
identifier.firstName (suggested): The requesting user's first name.
identifier.lastName (suggested): The requesting user's last name.
identifier.logoutURL (suggested): The URL that a user will be taken to when logging out.
identifier.url (suggested): A url reference to the user's page within the repository.
language.RFC3066 (suggested): The requesting user's preferred language selection code as describe by RFC3066
rights.accessRights (required): Determines the scope of actions that a user can perform in the system. Accepted values are:

none: The user is either not authenticated or does not have a valid account on the system
user: The user is authenticated and has a valid account on the system
admin: The user is authenticated and belongs to the system's administrative group

See the tag entry for more information on the structure of elements.metadata metadata

Parent

meta

Children

metadata (any)

Attributes

authenticated: (required) Accepted values are "yes", "no". Determines whether the user has been authenticated by the system.

<meta>

 <userMeta>

 <metadata element="identifier" qualifier="email">bobJones@tamu.edu</metadata>

 <metadata element="identifier" qualifier="firstName">Bob</metadata>

 <metadata element="identifier" qualifier="lastName">Jones</metadata>

 <metadata element="rights" qualifier="accessRights">user</metadata>

 <metadata ...> ... </metadata>

 ...

 <trail source="123456789/6">A bread crumb item</trail>

 <trail ...> ... </trail>

 ...

 </userMeta>

 <pageMeta> ... </pageMeta>

</meta>

value

Rich Text Container

Structural Element

The value element contains the value associated with a form field and can serve a different purpose for various field types. The value element is
comprised of two subelements: the raw element which stores the unprocessed value directly from the user of other source, and the interpreted element
which stores the value in a format appropriate for display to the user, possibly including rich text markup.

Parent

field

Children

hi (any)
xref (any)
figure (any)

Attributes

optionSelected: (optional) An optional attribute for select, checkbox, and radio fields to determine if the value is to be selected or not.
optionValue: (optional) An optional attribute for select, checkbox, and radio fields to determine the value that should be returned when this value
is selected.
type: (required) A required attribute to specify the type of value. Accepted types are:

raw: The raw type stores the unprocessed value directly from the user of other source.
interpreted: The interpreted type stores the value in a format appropriate for display to the user, possibly including rich text markup.
default: The default type stores a value supplied by the system, used when no other values are provided.

<p>
 <hi> ... </hi>
 <xref> ... </xref>
 <figure> ... </figure>
 <field id="XMLExample.field.name" n="name" type="text"
 required="yes">
 <params size="16" maxlength="32"/>
 <help>Some help text with <i18n>localized
 content</i18n>.</help>
 <value type="default">Author,
 John</value>
 </field>
</p>

xref

Text Container

Structural Element

The element is a reference to an external document. It can be mixed freely with text, and any text within the tag itself will be used as part of the link's xref
visual body.

Parent

cell
p
item
hi

Children

none

Attributes

target: (required) A target for the reference, using either a URL or an id of an existing element as a destination for the .xref

<p>
 <xref target="/url/link/target">This text is shown as a link.</xref>
</p>

	DRI Schema Reference

