
SWORDv1 Server
SWORD (Simple Web-service Offering Repository Deposit) is a protocol that allows the remote deposit of items into repositories. DSpace implements the
SWORD protocol via the 'sword' web application. The version of SWORD v1 currently supported by DSpace is 1.3. The specification and further
information can be found at .http://swordapp.org

SWORD is based on the Atom Publish Protocol and allows service documents to be requested which describe the structure of the repository, and
packages to be deposited.

1 Enabling SWORD Server
2 Configuring SWORD Server
3 Deposit to SWORD Server
4 DSpace 6 Demo - Service Document

Enabling SWORD Server

To enable DSpace's SWORD server, just make sure the web application is available from your Servlet Container (usually [dspace]/webapps/sword/
Tomcat).

Configuring SWORD Server

These are the SWORD (v1) configurations. They may be edited directly or overridden in your local.cfg config (see).Configuration Reference

Configuration
File:

[dspace]/config/modules/sword-server.cfg

Property: mets-ingester.package-ingestersword-server.

Example Value: mets-ingester.package-ingester = METSsword-server.

Informational
Note:

The property key tell the SWORD METS implementation which package ingester to use to install deposited content. This should
refer to one of the classes configured for:

plugin.named.org.dspace.content.packager.PackageIngester

The value of sword.mets-ingester.package-ingester tells the system which named plugin for this interface should be used to ingest
SWORD METS packages.

Properties: mets.default.ingest.crosswalk.EPDCX
 mets.default.ingest.crosswalk.*

(NOTE: These configs are in the file as they are used by many interfaces)dspace.cfg

Example Value: mets.submission.crosswalk.EPDCX = EPDCX

Informational
Note:

Define the metadata types (METS "mdtype") which can be accepted/handled by SWORD during ingest of a package. Currently,
EPDCX (EPrints DC XML) is the recommended default metadata format, but others are supported. An example of an EPDCX
SWORD package can be found at [dspace-src]/dspace-sword/example/example.zip.

Additional metadata types can be added to this list by just defining new configurations. For example, you can map a new "mdtype"
MYFORMAT to a custom crosswalk named MYFORMAT:

mets.submission.crosswalk.MYFORMAT = MYFORMAT

You'd also want to map your new custom crosswalk to a stylesheet using the next configuration (crosswalk.submission.*.stylesheet).

Property: crosswalk.submission.EPDCX.stylesheet
(NOTE: This configuration is in the file)dspace.cfg

Example Value: crosswalk.submission.EPDCX.stylesheet = crosswalks/sword-swap-ingest.xsl

Informational
Note:

Define the stylesheet which will be used by the self-named XSLTIngestionCrosswalk class when asked to load the SWORD
configuration (as specified in previous setting). This will use the specified stylesheet to crosswalk the incoming SWAP metadata to
the DIM format for ingestion.

Additional crosswalk types can be added to this list by just defining new configurations. For example, you can map a custom
crosswalk named MYFORMAT to use a specific "my-crosswalk.xsl" stylesheet:

crosswalk.submission.MYFORMAT.stylesheet = crosswalks/my-crosswalk.xsl

Keep in mind, you'll need to also ensure MYFORMAT crosswalk is defined by the previous configuration (mets.submission.
crosswalk.*).

http://swordapp.org
https://wiki.lyrasis.org/display/DSDOC6x/Configuration+Reference

Property: deposit.urlsword-server.

Example Value:
sword-server.deposit.url = http://www.myu.ac.uk/sword/deposit

Informational
Note:

The base URL of the SWORD deposit. This is the URL from which DSpace will construct the deposit location URLs for collections.
The default is (where is defined in your file). In the ${dspace.baseUrl}/sword/deposit dspace.baseUrl dspace.cfg
event that you are not deploying DSpace as the ROOT application in the servlet container, this will generate incorrect URLs, and
you should override the functionality by specifying in full as shown in the example value.

Property: servicedocument.urlsword-server.

Example Value:
sword-server.servicedocument.url = http://www.myu.ac.uk/sword/servicedocument

Informational
Note:

The base URL of the SWORD service document. This is the URL from which DSpace will construct the service document location
URLs for the site, and for individual collections. The default is (where ${dspace.baseUrl}/sword/servicedocument dspace.

 is defined in your file). In the event that you are not deploying DSpace as the ROOT application in the baseUrl dspace.cfg
servlet container, this will generate incorrect URLs, and you should override the functionality by specifying in full as shown in the
example value.

Property: media-link.urlsword-server.

Example Value:
sword-server.media-link.url = http://www.myu.ac.uk/sword/media-link

Informational
Note:

The base URL of the SWORD media links. This is the URL which DSpace will use to construct the media link URLs for items which
are deposited via sword. The default is (where is defined in your ${dspace.baseUrl}/sword/media-link dspace.baseUrl d

 file). In the event that you are not deploying DSpace as the ROOT application in the servlet container, this will generate space.cfg
incorrect URLs, and you should override the functionality by specifying in full as shown in the example value.

Property: generator.urlsword-server.

Example Value:
sword-server.generator.url = http://www.dspace.org/ns/sword/1.3.1

Informational
Note:

The URL which identifies the SWORD software which provides the sword interface. This is the URL which DSpace will use to fill out
the atom:generator element of its atom documents. The default is: http://www.dspace.org/ns/sword/1.3.1

If you have modified your SWORD software, you should change this URI to identify your own version. If you are using the standard
'dspace-sword' module you will not, in general, need to change this setting.

Property: sword-server.updated.field

Example Value: sword-server.updated.field = dc.date.updated

Informational
Note:

The metadata field in which to store the updated date for items deposited via SWORD.

Property: sword-server.slug.field

Example Value: sword-server.slug.field = dc.identifier.slug

Informational
Note:

The metadata field in which to store the value of the slug header if it is supplied.

Properties: sword-server.accept-packaging.METSDSpaceSIP.identifier
sword-server.accept-packaging.METSDSpaceSIP.q

Example Value:
sword-server.accept-packaging.METSDSpaceSIP.identifier = http://purl.org/net/sword-types
/METSDSpaceSIP
sword-server.accept-packaging.METSDSpaceSIP.q = 1.0

Informational
Note:

The accept packaging properties, along with their associated quality values where appropriate. This is a Global Setting; these will be
used on all DSpace collections

Property: sword-server.accepts

Example Value: sword-server.accepts = application/zip, foo/bar

Informational
Note:

A comma separated list of MIME types that SWORD will accept.

Properties: sword-server.accept-packaging.[handle].METSDSpaceSIP.identifier
sword-server.accept-packaging.[handle].METSDSpaceSIP.q

Example Value:
sword-server.accept-packaging.[handle].METSDSpaceSIP.identifier = http://purl.org/net/sword-
types/METSDSpaceSIP
sword-server.accept-packaging.[handle].METSDSpaceSIP.q = 1.0

Informational
Note:

Collection Specific settings: these will be used on the collections with the given handles.

Property: sword-server.expose-items

Example Value: sword-server.expose-items = false

Informational
Note:

Should the server offer up items in collections as sword deposit targets. This will be effected by placing a URI in the collection
description which will list all the allowed items for the depositing user in that collection on request. this will require an NOTE:
implementation of deposit onto items, which will not be forthcoming for a short while.

Property: sword-server.expose-communities

Example Value: sword-server.expose-communities = false

Informational
Note:

Should the server offer as the default the list of all Communities to a Service Document request. If false, the server will offer the list
of all collections, which is the default and recommended behavior at this stage. a service document for Communities will not NOTE:
offer any viable deposit targets, and the client will need to request the list of Collections in the target before deposit can continue.

Property: sword-server.max-upload-size

Example Value: sword-server.max-upload-size = 0

Informational
Note:

The maximum upload size of a package through the sword interface, in bytes. This will be the combined size of all the files, the
metadata and any manifest data. It is NOT the same as the maximum size set for an individual file upload through the user
interface. If not set, or set to 0, the sword service will default to no limit.

Property: sword-server.keep-original-package

Example Value: sword-server.keep-original-package = true

Informational
Note:

Whether or not DSpace should store a copy of the original sword deposit package. this will cause the deposit process to run NOTE:
slightly slower, and will accelerate the rate at which the repository consumes disk space. BUT, it will also mean that the deposited
packages are recoverable in their original form. It is strongly recommended, therefore, to leave this option turned on. When set to
"true", this requires that the configuration option (in) is set to a valid location.upload.temp.dir dspace.cfg

Property: sword-server.bundle.name

Example Value: sword-server.bundle.name = SWORD

Informational
Note:

The bundle name that SWORD should store incoming packages under if sword.keep-original-package is set to true. The default is
"SWORD" if not value is set

Properties: sword-server.keep-package-on-fail
sword-server.failed-package.dir

Example Value:
sword-server.keep-package-on-fail=true
sword-server.failed-package.dir=${dspace.dir}/upload

Informational
Note:

In the event of package ingest failure, provide an option to store the package on the file system. The default is false.

Property: sword-server.identify-version

Example Value: sword-server.identify-version = true

Informational
Note:

Should the server identify the sword version in a deposit response. It is recommended to leave this unchanged.

Property: sword-server.on-behalf-of.enable

Example Value: sword-server.on-behalf-of.enable = true

Informational
Note:

Should mediated deposit via sword be supported. If enabled, this will allow users to deposit content packages on behalf of other
users.

Property: sword-server.restore-mode.enable

Example Value: sword-server.restore-mode.enable = true

Informational
Note:

Should the sword server enable restore-mode when ingesting new packages. If this is enabled the item will be treated as a
previously deleted item from the repository. If the item had previously been assigned a handle then that same handle will be
restored to activity. If that item had not been previously assign a handle, then a new handle will be assigned.

Property: plugin.named.org.dspace.sword.SWORDingester

Example Value:
plugin.named.org.dspace.sword.SWORDIngester = \
 org.dspace.sword.SWORDMETSIngester = http://purl.org/net/sword-types/METSDSpaceSIP \
 org.dspace.sword.SimpleFileIngester = SimpleFileIngester

Informational
Note:

Configure the plugins to process incoming packages. The form of this configuration is as per the Plugin Manager's Named Plugin
documentation: (see plugin.named.[interface] = [implementation] = [package format identifier] dspace.

). Package ingesters should implement the SWORDIngester interface, and will be loaded when a package of the format cfg
specified above in: sword-server.accept-packaging.[package format].identifier = [package format

 is received. In the event that this is a simple file deposit, with no package format, then the class named by identifier]
"SimpleFileIngester" will be loaded and executed where appropriate. This case will only occur when a single file is being deposited
into an existing DSpace Item.

Deposit to SWORD Server

If you'd like to deposit content to your repository via the installed SWORD Server, you'll need to select a SWORD Client to do so.

A variety of SWORDv1 Clients (in various languages/tools) are available off of http://swordapp.org/sword-v1/
The DSpace XMLUI also comes with an optional which can be enabled to deposit content from one DSpace to another.SWORDv1 Client
An example SWORDv1 ZIP package is available in the DSpace Codebase at: https://github.com/DSpace/DSpace/tree/dspace-5_x/dspace-sword
/example
Finally, it's also possible to simply deposit a valid SWORD Zip package via common Linux commandline tools (e.g. curl). For example:

Deposit a SWORD Zip package named "sword-package.zip" into a DSpace Collection (Handle 123456789/2) as
user "test@dspace.org"
(Please note that you WILL need to obviously modify the Collection location, user/password and name of
the SWORD package)

curl -i --data-binary "@sword-package.zip" -H "Content-Disposition:filename=sword-package.zip" -H
"Content-Type:application/zip" -H "X-Packaging:http://purl.org/net/sword-types/METSDSpaceSIP" -u
test@dspace.org:[password] http://[dspace.url]/sword/deposit/123456789/2

Template 'curl' command:
#curl -i --data-binary "@[zip-package-name]" -H "Content-Disposition:filename=[zip-package-name]" -H
"Content-Type:application/zip" -H "X-Packaging:http://purl.org/net/sword-types/METSDSpaceSIP" -u [user]:
[password] http://[dspace.url]/sword/deposit/[collection-handle]

DSpace 6 Demo - Service Document

https://demo.dspace.org/sword/servicedocument
https://demo.dspace.org/swordv2/servicedocument

http://swordapp.org/sword-v1/
https://wiki.lyrasis.org/display/DSDOC5x/SWORDv1+Client
https://github.com/DSpace/DSpace/tree/dspace-5_x/dspace-sword/example
https://github.com/DSpace/DSpace/tree/dspace-5_x/dspace-sword/example
https://demo.dspace.org/sword/servicedocument
https://demo.dspace.org/swordv2/servicedocument

	SWORDv1 Server

