
Changing the appearance of VIVO

Introduction
Making changes to VIVO

What is included here?
What is not included here?

VIVO is already customized
VIVO and Vitro
How VIVO is merged into Vitro

Adding your own customizations
Working in the GUI
RDF files
Changes to the source files
A third tier?

Tool summary
Required skills
The tools

Introduction

Making changes to VIVO

The VIVO application is a popular tool for research networking. Most VIVO sites put their own changes into VIVO, in order to create a distinctive
appearance, or to satisfy their particular needs.

VIVO supports an assortment of tools and techniques for making these changes. Some changes can be accomplished while VIVO is running, simply by
setting values on a form. Other changes require you to add or modify configuration files that control the application. Still other changes are accomplished
by editing the VIVO code, re-building, and re-deploying the application.

What is included here?

This document describes the most common ways of modifying VIVO. The changes affect the appearance, layout, and content of the pages in the
application.

What is not included here?

Data operations
VIVO is only as good as the data it holds, and how the data is structured. The task of populating VIVO with data is very different on each
site. Techniques for ingesting data into VIVO are covered in a separate document.

The ontology
VIVO recognizes classes, instances, and properties base on the statements in its ontology. To a large extent, this determines how VIVO
behaves. This document does not discuss changes to the ontology.

The Java code
VIVO is open source software, so all changes are permitted. However, changes to the Java code are not discussed here. The sole
exception is the custom editing forms, which do require some Java.

The search index
The search index in VIVO can be configured to exclude certain classes of individuals. It can also be customized to include additional
data fields. This document does not discuss how to customize the search index.

The supporting technologies
VIVO relies on a triple-store and a search engine. It can be used with an external authentication system. Options for configuring or
changing these technologies are discussed in the installation guide.

VIVO is already customized

Customization is built in to the heart of VIVO. VIVO itself is a customization of a more basic product called Vitro.

Here is how Vitro has been customized to become VIVO

Vitro VIVO

No ontology Includes an ontology for Research Networking

Minimal theme Rich theme.

Default display rules Annotations are used to:

Assign data properties to groups
Arrange property groups on the page

Default permissions Display and editing permissions are customized, based on the ontology

Default editing forms Editing is customized to the ontology

Default search index Search index contains additional fields, specific to VIVO

Default functionality Additional functionality: visualizations, interface to Harvester, QR codes, etc.

In total: A general-purpose tool for working with Semantic Data. In total: A specialized tool for Research Networking

VIVO and Vitro

VIVO includes Vitro

When the VIVO distribution files are unpacked, the Vitro files are inside the main directory

Most of VIVO is Vitro

This graphic from VIVO release 1.5 shows how much of VIVO is actually Vitro. Vitro makes up more than 60 percent of the VIVO distribution. If you were
to remove the VIVO acceptance tests, about 80 percent of VIVO would actually be Vitro.

How VIVO is merged into Vitro

The build process in VIVO begins by overlaying the VIVO directory structure on the Vitro directory structure.

If a file in VIVO has the same name and directory path as a file in Vitro, the file in VIVO will replace (override) the file in Vitro, which is blocked. VIVO files
that do not override Vitro files are added to the merged directories. The build process continues by compiling, testing, integrating and packaging the
merged directories.

Adding your own customizations

How do you add your changes to VIVO? Perhaps more important, how do you keep your changes when you upgrade to a newer release of VIVO?

Working in the GUI

When you use forms in VIVO, the values you enter are kept in the triple-store. They will be retained when you upgrade to a new release. If the new release
uses a different format to store the values, your changes will be migrated to the new format.

RDF files

Some customizations require that you add or modify an RDF file in your VIVO home directory. In general, it's best to create a new file to contain the RDF
statements, so you can easily carry your changes to a new VIVO release.

A "clean" build of VIVO will erase the RDF files in your VIVO home directory. You will need to re-create these files after the migration.

Changes to the source files

As with the RDF files, you should favor new files over changes to existing files. This will make it easier to carry your changes to a new release.

A third tier?

The discussion of VIVO and Vitro shows how the two code bases are combined during the build process. Some VIVO sites keep their local modifications in
a third layer. This layer (or tier) is combined with VIVO and Vitro during the build.

The three-tier approach is a little harder to set up than the standard build, but it has the advantage of keeping all of your local modifications separate from
the VIVO distribution. When the time comes to upgrade to a new release, there is no question about what files contain your local changes.

The two-tier build is fine, if your changes are limited to:

Annotations on the ontology
A custom theme
Page management
Language support

Three-tiers might be better if you will be using

Custom list views
Custom short views
Custom entry forms
Java changes

The VIVO Installation Instructions contain more details about how to set three tiers and there is a Git .project template available

Tool summary

Required skills

The customization tools require different levels of knowledge. Some are as simple as filling out a web form. Most require the ability to write HTML, with
additions from the Freemarker template engine. Some require Java programming.

As the tools are described, these terms will be used to specify the skills needed:

 Knowlege required

Basic Requires an understanding of VIVO concepts.

Web development The usual technologies for writing web sites, including HTML, CSS, and JavaScript.

Knowledge of the Freemarker template engine.

RDF Modify or create RDF data files, using RDF/XML, Turtle, or N3 format.

SPARQL Create queries against the triple-store, using SPARQL.

Java Create or modify Java code.

OpenSocial Create or modify OpenSocial gadgets, written in JavaScript.

The tools

 What does it do? How? Required skills

Creating a custom theme Create your own "brand" for VIVO.

Change colors, logo, headings, footers, and
more.

CSS files, JavaScript files, and templates for
HTML.

Web development

https://github.com/lawlesst/vivo-project-template
https://wiki.lyrasis.org/display/VIVOv17x/Creating+a+custom+theme

Annotations on the ontology Control how data is displayed.

Property groups, labels, display order,
hidden properties, and more.

Interactive. Basic

Home page customizations Choose from home page options.

Add a geographic focus map.

Edit your home page template to include a
selection of sub-templates.

Web development

Page management Add new pages to VIVO.

Static pages, navigation pages, or dynamic
reports.

Interactive. Web development,
optional SPARQL

Profiles for classes Use one type of profile page for people and
another for organizations.

Create page templates.

Configure VIVO to associate them with classes.

Web development, RDF

Multiple profile types for foaf:
Person

Provide a choice of formats for profile pages.

Each page owner selects the format for his
own page.

Edit page templates.

Perhaps connect to a Website image capture
service.

Web development

Enriching profile pages with
SPARQL queries

Display additional data on a profile page. Write a SPARQL query.

Create a template to display the results.

Configure VIVO to use it.

Web development,
SPARQL, RDF

Enhancing page templates with
SPARQL queries

Display additional data in any page template. Write a SPARQL query.

Modify a template to display the results.

Configure VIVO to use it.

Web development,
SPARQL, RDF

Custom list views Change how certain properties are displayed

Change the layout for that property
Display additional data with each value.

Write a SPARQL query.

Create a template to display the results.

Configure VIVO to use it.

Web development,
SPARQL, RDF

Custom short views Change how search results are displayed

Display depends on the type of result
(Person, Document, etc.).

Also change display on index pages and browse
pages.

Write a SPARQL query.

Create a template to display the results.

Configure VIVO to use it.

Web development,
SPARQL, RDF

Custom entry forms Create data entry forms

Add or edit complex data structures.

Write a generator class in Java.

Create a template for the editing form.

Web development,
SPARQL, RDF, Java

Using Open Social Gadgets Create optional content for profile pages.

Each page owner configures the gadgets
for his own page.

Create gadgets from JavaScript, or install
existing gadgets.

Web development,
OpenSocial

Language support Languages other than English

Use VIVO in Spanish
Allow viewers to choose their preferred
language.
Implement other languages.

Create files of phrases in the desired
language, or install existing files.

Basic

https://wiki.lyrasis.org/display/VIVOv17x/Annotations+on+the+ontology
https://wiki.lyrasis.org/display/VIVOv17x/Home+page+customizations
https://wiki.lyrasis.org/display/VIVOv17x/Page+management
https://wiki.lyrasis.org/display/VIVOv17x/Class-specific+templates+for+profile+pages
#
#
https://wiki.lyrasis.org/display/VIVOv17x/Enriching+profile+pages+using+SPARQL+query+DataGetters
https://wiki.lyrasis.org/display/VIVOv17x/Enriching+profile+pages+using+SPARQL+query+DataGetters
https://wiki.lyrasis.org/display/VIVOv17x/Enhancing+Freemarker+templates+with+DataGetters
https://wiki.lyrasis.org/display/VIVOv17x/Enhancing+Freemarker+templates+with+DataGetters
https://wiki.lyrasis.org/display/VIVOv17x/Custom+List+View+Configurations
https://wiki.lyrasis.org/display/VIVOv17x/Creating+short+views+of+individuals
https://wiki.lyrasis.org/display/VIVOv17x/Creating+custom+entry+forms
https://wiki.lyrasis.org/display/VIVOv17x/Using+OpenSocial+Gadgets
https://wiki.lyrasis.org/display/VIVOv17x/VIVO+support+for+languages+other+than+English

	Changing the appearance of VIVO

