
Enhancing Freemarker templates with DataGetters

Overview
An example
Creating the DataGetter
Modifying the template
Summary

Write SPARQL queries to add information to any Freemarker template.

Overview
Since VIVO 1.6, it is possible for a Freemarker template to display data that is not normally provided to it.

You can create an RDF file that describes a custom object, and associates it with the desired template. Each time that template is used, the DataGetter D
 will be executed, and the data will be stored in a variable, so the template can display it.ataGetter

This does not require changes to the Java code. You create the RDF file in your VIVO distribution directory and modify the template in your theme.

An example
Let's assume that we need to display information about the most recent data ingest operation. We want to display the name of the Person who supervised
the ingest. We would like to display this on every page.

As part of the ingest process, we can load statements like this into the data model:

<http://vivo.mydomain.edu/individual/n5242>
 <http://vivo.mydomain.edu/individual/isMostRecentUpdater>
 "true" .
<http://vivo.mydomain.edu/individual/n5242>
 <http://www.w3.org/2000/01/rdf-schema#label>
 "Baker, Able" .

We would like for VIVO to display the name of this individual on every page, so the footer will change from this:

to this:

Creating the DataGetter
VIVO allows you to define and use objects in several contexts. s come in many flavors, but the most commonly used is the DataGetter DataGetter Spa

, which lets you define a SPARQL query, and store the results of that query for your Freemarker template to display.rqlQueryDataGetter

By adding statements to your data model, you can define a object, and associate it with a Freemarker template. Here is the SparqlQueryDataGetter
definition that is used in this example:

@prefix display: <http://vitro.mannlib.cornell.edu/ontologies/display/1.1#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<freemarker:footer.ftl> display:hasDataGetter display:updatedInfoDataGetter .

display:updatedInfoDataGetter
 a <java:edu.cornell.mannlib.vitro.webapp.utils.dataGetter.SparqlQueryDataGetter> ;
 display:saveToVar "updatedInfo" ;
 display:query """
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX local: <http://vivo.mydomain.edu/individual/>

 SELECT (str(?rawLabel) AS ?updater)
 WHERE {
 ?uri local:isMostRecentUpdater ?o ;
 rdfs:label ?rawLabel .
 }
 LIMIT 1
 """ .

These statements can be added to your data model in any of several ways. For this example, I stored these lines in a file called data_getter_for_exam
 and placed it in the VIVO distribution directory under . Files placed in this directory are loaded when VIVO starts, but ple.n3 rdf/display/everytime

are not persisted when VIVO stops. This allows you to edit or remove the file without leaving residual statements in your data model.

Notice that:

The first statement says that the Freemarker template has a , defined in subsequent lines.footer.ftl DataGetter
The definition of the states:DataGetter

the type of the data getter,
the SPARQL query that will be executed
the Freemarker variable that will hold the results.

The results of the SPARQL query are stored in a Freemarker variable, in this case . The variable will contain a Sequence of Hashes, where updatedInfo
each Hash represents one line of the SPARQL result. Within each Hash, result values are specified as key/value pairs.

For more information on Sequences and Hashes, consult the Freemarker manual:

Retrieving data from a Sequence
Retrieving data from a Hash

Modifying the template
Here is the standard template, as used in VIVO 1.6:footer.ftl

http://freemarker.sourceforge.net/docs/dgui_template_exp.html#dgui_template_exp_var_sequence
http://freemarker.sourceforge.net/docs/dgui_template_exp.html#dgui_template_exp_var_hash

Insert these lines between lines 19 and 20:

 <#if (updatedInfo?first.updater)??>
 | Updated by ${updatedInfo?first.updater}
 </#if>

The SPARQL result is obtained and stored into the Freemarker variable each time the template is loaded for display. The updatedInfo footer.ftl
name we want is in the first row of the SPARQL result, keyed to the name . updater

Summary
Enhancing Freemarker templates is one more way to use the VIVO mechanism. When you associate a with a Freemarker DataGetter DataGetter
template, that will be run each time the template is invoked. This is true whether the template is specified by the controller, or included in DataGetter
another template. You can modify the template to display the data from the , but it is prudent to include an tag, so your template won't DataGetter <#if>
fail if the data is not found.

	Enhancing Freemarker templates with DataGetters

