
Linked (Open) Data

Introduction
Exchanging repository contents
Terminology

Linked (Open) Data Support within DSpace
Architecture / Concept
Install a Triple Store
Default configuration and what you should change
Configuration Reference

[dspace-source]/dspace/config/modules/rdf.cfg
[dspace-source]/dspace/config/modules/rdf/constant-data-*.ttl
[dspace-source]/dspace/config/modules/rdf/metadata-rdf-mapping.ttl
[dspace-source]/dspace/config/modules/rdf/fuseki-assembler.ttl
[dspace-source]/dspace/config/spring/api/rdf.xml

Maintenance

Introduction

Exchanging repository contents

Most sites on the Internet are oriented towards human consumption. While HTML may be a good format for presenting information to humans, it is not a
good format to export data in a way easy for a computer to work with. Like most software for building repositories, DSpace supports as an OAI-PMH
interface to expose the stored metadata. While OAI-PMH is well known in the field of repositories, it is rarely known elsewhere (e.g. Google retired its

). The Semantic Web is a generic approach to publish data on the Internet together with information about its semantics. Its support for OAI-PMH in 2008
application is not limited to repositories or libraries and it has a growing user base. W3C-released standards for publishing RDF and SPARQL are
structured data on the web in a machine-readable way. The data stored in repositories is particularly suited for use in the Semantic Web, as the metadata
are already available. It doesn’t have to be generated or entered manually for publication as Linked Data. For most repositories, at least for Open Access
repositories, it is quite important to share their stored content. Linked Data is a rather big chance for repositories to present their content in a way that can
easily be accessed, interlinked and (re)used.

Terminology

We don't want to give a full introduction into the Semantic Web and its technologies here as this can be easily found in many places on the web.
Nevertheless, we want to give a short glossary of the terms used most often in this context to make the following documentation more readable.

Semantic
Web

The term "Semantic Web" refers to the part of the Internet containing Linked Data. Just like the World Wide Web, the Semantic Web is
also woven together by links among the data.

Linked
Data

Linked
Open
Data

Data in RDF, following the are called Linked Data. The Linked Data Principles describe the expected behavior of Linked Data Principles
data publishers who shall ensure that the data are easy to find, easy to retrieve, can be linked easily and link to other data as published
well.

Linked Open Data is Linked Data published under an open license. There is no t difference between Linked Data and Linked echnical
Open Data (often abbreviated as LOD). It is only a question of the license used to publish it.

RDF
RDF/XML
Turtle
N-Triples
N3-
Notation

RDF is an acronym for Resource Description Framework, a metadata model. Don't think of RDF as a format, as it is a model.
Nevertheless, there are different formats to serialize data following RDF. RDF/XML, Turtle, N-Triples and N3-Notation are probably the
most well-known formats to serialize data in RDF. While RDF/XML uses XML, Turtle, N-Triples and N3-Notation don't and they are
easier for humans to read and write. When we use RDF in configuration files, we currently prefer Turtle (but the code should be DSpace
able to deal with any serialization).

Triple
Store

A triple store is a database to natively store data following the RDF model. Just as you have to provide a relational database for DSpace,
you have to provide a Triple Store for DSpace if you want to use the LOD support.

SPARQL The SPARQL Protocol and RDF Query Language is a family of protocols to query triple stores. Since version 1.1, can be used SPARQL
to manipulate triple stores as well, to store, delete or update data in triple stores. DSpace uses SPARQL 1.1 Graph Store HTTP Protocol
and SPARQL 1.1 Query Language to communicate with the Triple Store. The SPARQL 1.1 Query Language is often referred to simply
as SPARQL, so expect the SPARQL 1.1 Query Language if no other specific protocol out of the SPARQL family is explicitly .specified

SPARQL
endpoint

A SPARQL endpoint is a SPARQL interface of a triple store. Since SPARQL 1.1, a SPARQL endpoint can be either read-only, allowing o
to query the stored data; or readable and writable, allowing to modify the stored data as well. When talking about a SPARQL nly

endpoint without specifying which SPARQL protocol is used, an endpoint supporting SPARQL 1.1 Query Language is meant.

Linked (Open) Data Support within DSpace
Starting with DSpace 5.0, DSpace provides stored contents in form of Linked (Open) Data.support for publishing

https://wiki.lyrasis.org/display/DSDOC6x/OAI
http://googlewebmastercentral.blogspot.de/2008/04/retiring-support-for-oai-pmh-in.html
http://googlewebmastercentral.blogspot.de/2008/04/retiring-support-for-oai-pmh-in.html
http://www.w3.org/standards/techs/rdf#w3c_all
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/DesignIssues/LinkedData.html

Architecture / Concept

To publish content stored in DSpace as Linked (Open) Data, the data have to be converted into RDF. The conversion into RDF has to be configurable as
different DSpace instances may use different metadata schemata, different persistent identifiers (DOI, Handle, ...) and so on. Depending on the content to
convert, configuration and other parameters, may be time- and impact performance. Content of repositories is much more often read conversion intensive
then created, deleted or changed because the main goal of repositories is to safely store their contents. For this reason, the content stored within DSpace
is converted and immediately after it is created or updated. The triple store serves as a cache and provides a SPARQL endpoint to stored in a triple store
make the converted data accessible using SPARQL. The conversion is triggered automatically by the DSpace event system and can be started manually
using the command line interface – both cases are documented below. There is no need to backup the triple store, as all data stored in the triple store can
be recreated from the contents stored in DSpace (in the assetstore(s) and the database). Beside the SPARQL endpoint, the data should be elsewhere
published as RDF serialization as well. With dspace-rdf DSpace offers a module that loads converted data from the triple store and provides it as an RDF
serialization. It currently supports RDF/XML, Turtle and N-Triples.

Repositories use Persistent Identifiers to make content citable and to address content. Following the Linked Data Principles, DSpace uses a Persistent
Identifier in the form of HTTP(S) URIs, converting a Handle to http://hdl.handle.net/<handle> and a DOI to http://dx.doi.org/<doi>. Altogether, LinkeDSpace
d Data support spans all three Layers: the storage layer with a triple store, the business logic with classes to convert stored contents into RDF, and the
application layer with a module to publish RDF serializations. Just like DSpace allows you to choose Oracle or Postgresql as the relational database, you
may choose between different triple stores. The only requirements are that the triple store must support SPARQL 1.1 Query Language and SPARQL 1.1
Graph Store HTTP Protocol which DSpace uses to store, update, delete and load converted data in/out of the triple store and uses the triple store to
provide the data over a SPARQL endpoint.

Store public data only in the triple store!

The triple store should contain only data that are public, because the access restrictions won't affect the SPARQL endpoint. For this reason, DSpace
DSpace converts only archived, discoverable (non-private) Items, Collections and Communities which are readable for anonymous users. Please consider
this while configuring and/or extending DSpace Linked Data support.

The contains the classes used to convert the repository content to RDF. The conversion itself is done by plugins. The org.dspace.rdf.conversion package or
 is really simple, so take a look at it you can program in Java and want to extend the conversion. The g.dspace.rdf.conversion.ConverterPlugin interface if

only thing important is that plugins must only create RDF that can be made publicly available, as the triple store provides it using a sparql endpoint for
which the DSpace access restrictions do not apply. Plugins converting metadata should check whether a specific metadata field needs to be protected or
not (see on how to check that). The is heavily configurable (see below) and is used to org.dspace.app.util.MetadataExposure MetadataConverterPlugin
convert the metadata of Items. The can be used to add static RDF Triples (see below). The StaticDSOConverterPlugin SimpleDSORelationsConverterPlugin
creates links between items and collections, collections and communities, subcommunitites and their parents, and between top-level communities and the
information representing the repository itself.

As different repositories uses different persistent identifiers to address their content, different algorithms to create URIs used within the converted data can
be implemented. Currently HTTP(S) URIs of the repository (called local URIs), Handles and DOIs can be used. See the configuration part of this document
for further information. If you want to add another algorithm, take a look at the .org.dspace.rdf.storage.URIGenerator interface

Install a Triple Store

In addition to a normal DSpace installation you have to install a triple store. You can use any triple store that supports SPARQL 1.1 Query Language and
SPARQL 1.1 Graph Store HTTP Protocol. If you do not have one yet, you can use Apache Fuseki. Download Fuseki from its and official download page
unpack the downloaded archive. The archive contains several scripts to start Fuseki. Use the start script appropriate to the OS of your choice with the
options '--localhost --config=<dspace-install>/config/modules/rdf/fuseki-assembler.ttl'. Instead of changing to the directory into which you unpacked Fuseki,
you may set the variable FUSEKI_HOME. If you're using Linux and bash, you unpacked Fuseki to /usr/local/jena-fuseki-1.0.1 and you installed DSpace to
[dspace-install], this would look like this:

export FUSEKI_HOME=/usr/local/jena-fuseki-1.0.1 ; $FUSKI_HOME/fuseki-server --localhost --config [dspace-
install]/config/modules/rdf/fuseki-assembler.ttl

Fuseki's archive contains a script to start Fuseki automatically at startup as well.

Make Fuseki connect to localhost only, by using the argument --localhost when launching if you use the configuration provided with DSpace! The
configuration contains a writeable SPARQL endpoint that allows any connection to change/delete the content of your triple store.
Use Apache mod proxy, mod rewrite or any other appropriate web server/proxy to make localhost:3030/dspace/sparql readable from the internet. Use the
address under which it is accessible as the address of your public sparql endpoint (see the property public.sparql.endpoint in the configuration reference
below.).

The configuration provided within DSpace makes it store the files for the triple store under [dspace-install]/triplestore. Using this configuration, Fuseki
provides three SPARQL endpoints: two read-only endpoints and one that can be used to change the data of the triple store. You should not use this

 as it would make it possible for anyone to delete, change or add information to the triple configuration if you let Fuseki connect to the internet directly
store. The option --localhost tells Fuseki to listen only on the loopback device. You can use Apache mod_proxy or any other web or proxy server to make
the read-only SPARQL endpoint accessible from the internet. With the configuration described, Fueski listens to the port 3030 using HTTP. Using the
address you can connect to the Fuseki Web UI. addresses a writeable SPARQL 1.1 HTTP Graph http://localhost:3030/ http://localhost:3030/dspace/data
Store Protocol endpoint, and a read-only one. Under a read-only SPARQL 1.1 Query http://localhost:3030/dspace/get http://localhost:3030/dspace/sparql
Language endpoint can be found. , while the last one should be accessible The first one of these endpoints must be not accessible by the internet
publicly.

Default configuration and what you should change

https://github.com/DSpace/DSpace/tree/master/dspace-api/src/main/java/org/dspace/rdf/conversion
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/main/java/org/dspace/rdf/conversion/ConverterPlugin.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/main/java/org/dspace/rdf/conversion/ConverterPlugin.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/main/java/org/dspace/app/util/MetadataExposure.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/main/java/org/dspace/rdf/conversion/MetadataConverterPlugin.java
https://wiki.duraspace.org/dspace-api/src/main/java/org/dspace/rdf/conversion/StaticDSOConverterPlugin.java
https://wiki.duraspace.org/dspace-api/src/main/java/org/dspace/rdf/conversion/SimpleDSORelationsConverterPlugin.java
https://wiki.duraspace.org/dspace-api/src/main/java/org/dspace/rdf/conversion/SimpleDSORelationsConverterPlugin.java
https://github.com/DSpace/DSpace/blob/master/dspace-api/src/main/java/org/dspace/rdf/storage/URIGenerator.java
http://jena.apache.org/documentation/serving_data/index.html#download-fuseki

In the file you should look for the property and add [dspace-source]/dspace/config/dspace.cfg event.dispatcher.default.consumers rdf
there. Adding rdf there makes DSpace update the triple store automatically as the publicly available content of the repository changes.

As the Linked Data support of DSpace is highly configurable this section gives a short list of things you probably want to configure before using it. Below
you can find more information on what is possible to configure.

In the file you want to configure the address of the public sparql endpoint and the address of [dspace-source]/dspace/config/modules/rdf.cfg
the writable endpoint DSpace use to connect to the triple store (the properties , rdf.public.sparql.endpoint rdf.storage.graphstore.

). In the same file you want to configure the URL that addresses the dspace-rdf module which is depending on where you deployed it (property endpoint r
) and switch content negotiation on (set property).df.contextPath rdf.contentNegotiation.enable = true

In the file you should change the links to the Web UI of the [dspace-source]/dspace/config/modules/rdf/constant-data-general.ttl
repository and the public readable SPARQL endpoint. The URL of the public SPARQL endpoint should point to a URL that is proxied by a webserver to the
Triple Store. See the section above for further information.Install a Triple Store

In the file you may add any triples that should be added to the [dspace-source]/dspace/config/modules/rdf/constant-data-site.ttl
description of the repository itself.

If you want to change the way the metadata fields are converted, take a look into the file [dspace-source]/dspace/config/modules/rdf
. This is also the place to add information on how to map metadata fields that you added to DSpace. There is already a /metadata-rdf-mapping.ttl

quite acceptable default configuration for the metadata fields which DSpace supports out of the box. If you want to use some specific prefixes in RDF
serializations that support prefixes, you have to edit .[dspace-source]/dspace/config/modules/rdf/metadata-prefixes.ttl

Configuration Reference

There are several configuration files to configure DSpace's LOD support. The main configuration file can be found under [dspace-source]/dspace
. Within DSpace we use Spring to define which classes to load. For DSpace's LOD support this is done within /config/modules/rdf.cfg [dspace-

. All other configuration files are positioned in the directory source]/dspace/config/spring/api/rdf.xml [dspace-source]/dspace/config
/. Configurations in can be modified directly, or overridden via your config file (see). You'll /modules/rdf rdf.cfg local.cfg Configuration Reference

have to configure where to find and how to connect to the triple store. You may configure how to generate URIs to be used within the generated Linked
Data and how to convert the contents stored in DSpace into RDF. We will guide you through the configuration file by file.

[dspace-source]/dspace/config/modules/rdf.cfg

Pr
o
p
er
ty:

rdf.contentNegotiation.enable

E
xa
m
ple

V
al
u
e:

rdf.contentNegotiation.enable = true

In
fo
r
m
ati
o
n
al
N
ot
e:

Defines whether content negotiation should be activated. Set this true, if you use Linked Data support.

Pr
o
p
er
ty:

rdf.contextPath

https://wiki.lyrasis.org/display/DSDOC6x/Configuration+Reference

E
xa
m
ple

V
al
u
e:

rdf.contextPath = ${dspace.baseUrl}/rdf

In
fo
r
m
ati
o
n
al
N
ot
e:

The content negotiation needs to know where to refer if anyone asks for RDF serializations of content stored within DSpace. This property sets the
URL where the dspace-rdf module can be reached on the Internet (depending on how you deployed it).

Pr
o
p
er
ty:

rdf.public.sparql.endpoint

E
xa
m
ple

V
al
u
e:

rdf.public.sparql.endpoint = http://${dspace.baseUrl}/sparql

In
fo
r
m
ati
o
n
al
N
ot
e:

Address of the read-only public SPARQL endpoint supporting SPARQL 1.1 Query Language.

Pr
o
p
er
ty:

rdf.storage.graphstore.endpoint

E
xa
m
ple

V
al
u
e:

rdf.storage.graphstore.endpoint = http://localhost:3030/dspace/data

In
fo
r
m
ati
o
n
al
N
ot
e:

Address of a writable SPARQL 1.1 Graph Store HTTP Protocol endpoint. This address is used to create, update and delete converted data in the
triple store. If you use Fuseki with the configuration provided as part of DSpace 5, you can leave this as it is. If you use another Triple Store or
configure Fuseki on your own, change this property to point to a writeable SPARQL endpoint supporting the SPARQL 1.1 Graph Store HTTP
Protocol.

Pr
o
p
er
ty:

rdf.storage.graphstore.authentication

E
xa
m
ple

V
al
u
e:

rdf.storage.graphstore.authentication = no

In
fo
r
m
ati
o
n
al
N
ot
e:

Defines whether to use HTTP Basic authentication to connect to the writable SPARQL 1.1 Graph Store HTTP Protocol endpoint.

Pr
o
p
er
tie
s:

rdf.storage.graphstore.login
rdf.storage.graphstore.password

E
xa
m
ple

V
al
u
es:

rdf.storage.graphstore.login = dspace
rdf.storage.graphstore.password =ecapsd

In
fo
r
m
ati
o
n
al
N
ot
e:

Credentials for the HTTP Basic authentication if it is necessary to connect to the writable SPARQL 1.1 Graph Store HTTP Protocol endpoint.

Pr
o
p
er
ty:

rdf.storage.sparql.endpoint

E
xa
m
ple

V
al
u
e:

rdf.storage.sparql.endpoint = http://localhost:3030/dspace/sparql

In
fo
r
m
ati
o
n
al
N
ot
e:

Besides a writable SPARQL 1.1 Graph Store HTTP Protocol endpoint, DSpace needs a SPARQL 1.1 Query Language endpoint, which can be
read-only. This property allows you to set an address to be used to connect to such a SPARQL endpoint. If you leave this property empty the
property ${rdf.public.sparql.endpoint} will be used instead.

Pr
o
p
er
tie
s:

rdf.storage.sparql.authentication
rdf.storage.sparql.login
rdf.storage.sparql.password

E
xa
m
ple

V
al
u
es:

rdf.storage.sparql.authentication = yes
rdf.storage.sparql.login = dspace
rdf.storage.sparql.password = ecapsd

In
fo
r
m
ati
o
n
al
N
ot
e:

As for the SPARQL 1.1 Graph Store HTTP Protocol you can configure DSpace to use HTTP Basic authentication to authenticate against the (read-
only) SPARQL 1.1 Query Language endpoint.

Pr
o
p
er
ty:

rdf.converter.DSOtypes

E
xa
m
ple

V
al
u
e:

rdf.converter.DSOtypes = SITE, COMMUNITY, COLLECTION, ITEM

In
fo
r
m
ati
o
n
al
N
ot
e:

Define which kind of DSpaceObjects should be converted. Bundles and Bitstreams will be converted as part of the Item they belong to. Don't add
EPersons here unless you really know what you are doing. All converted data is stored in the triple store that provides a publicly readable SPARQL
endpoint. So all data converted into RDF is exposed publicly. Every DSO type you add here must have an HTTP URI to be referenced in the
generated RDF, which is another reason not to add EPersons here currently.

The following properties configure the StaticDSOConverterPlugin.

Pr
o
p
er
tie
s:

rdf.constant.data.GENERAL
constant.data.COLLECTIONrdf.
constant.data.COMMUNITYrdf.
constant.data.ITEMrdf.
constant.data.SITErdf.

E
xa
m
ple

V
al
u
es:

rdf.constant.data.GENERAL = ${dspace.dir}/config/modules/rdf/constant-data-general.ttl
constant.data.COLLECTION = ${dspace.dir}/config/modules/rdf/constant-data-collection.ttlrdf.
constant.data.COMMUNITY = ${dspace.dir}/config/modules/rdf/constant-data-community.ttlrdf.
constant.data.ITEM = ${dspace.dir}/config/modules/rdf/constant-data-item.ttlrdf.
constant.data.SITE = ${dspace.dir}/config/modules/rdf/constant-data-site.ttlrdf.

In
fo
r
m
ati
o
n
al
N
ot
e:

These properties define files to read static data from. These data should be in RDF, and by default Turtle is used as serialization. The data in the
file referenced by the property ${ constant.data.GENERAL} will be included in every Entity that is converted to RDF. E.g. it can be used to point rdf.
to the address of the public readable SPARQL endpoint or may contain the name of the institution running DSpace.

The other properties define files that will be included if a DSpace Object of the specified type (collection, community, item or site) is converted. This
makes it possible to add static content to every Item, every Collection, ...

The following properties configure the MetadataConverterPlugin.

Pr
o
p
er
ty:

rdf.metadata.mappings

E
xa
m
ple

V
al
u
e:

rdf.metadata.mappings = ${dspace.dir}/config/modules/rdf/metadata-rdf-mapping.ttl

In
fo
r
m
ati
o
n
al
N
ot
e:

Defines the file that contains the mappings for the MetadataConverterPlugin. See below the description of the configuration file [dspace-source]
/dspace/config/modules/rdf/metadata-rdf-mapping.ttl.

Pr
o
p
er
ty:

rdf.metadata.schema

E
xa
m
ple

V
al
u
e:

rdf.metadata.schema = file://${dspace.dir}/config/modules/rdf/metadata-rdf-schema.ttl

In
fo
r
m
ati
o
n
al
N
ot
e:

Configures the URL used to load the RDF Schema of the DSpace Metadata RDF mapping Vocabulary. Using a file:// URI makes it possible to
convert DSpace content without having an internet connection. The version of the schema has to be the right one for the used code. In DSpace
5.0 we use the version 0.2.0. This Schema can be found here as well: Thhttp://digital-repositories.org/ontologies/dspace-metadata-mapping/0.2.0.
e newest version of the Schema can be found here: .http://digital-repositories.org/ontologies/dspace-metadata-mapping/

http://digital-repositories.org/ontologies/dspace-metadata-mapping/0.2.0
http://digital-repositories.org/ontologies/dspace-metadata-mapping/0.2.0

Pr
o
p
er
ty:

rdf.metadata.prefixes

E
xa
m
ple

V
al
u
e:

rdf.metadata.prefixes = ${dspace.dir}/config/modules/rdf/metadata-prefixes.ttl

In
fo
r
m
ati
o
n
al
N
ot
e:

If you want to use prefixes in RDF serializations that support prefixes, you can define these prefixes in the file referenced by this property.

The following properties configure the SimpleDSORelationsConverterPlugin

Pr
o
p
er
ty:

rdf.simplerelations.prefixes

E
xa
m
ple

V
al
u
e:

rdf.simplerelations.prefixes = ${dspace.dir}/config/modules/rdf/simple-relations-prefixes.ttl

In
fo
r
m
ati
o
n
al
N
ot
e:

If you want to use prefixes in RDF serializations that support prefixes, you can define these prefixes in the file referenced by this property.

Pr
o
p
er
ty:

rdf.simplerelations.site2community

E
xa
m
ple

V
al
u
e:

rdf.simplerelations.site2community = , http://purl.org/dc/terms/hasPart http://digital-repositories.org/ontologies/dspace/0.1.0#hasCommunity

http://purl.org/dc/terms/hasPart
http://digital-repositories.org/ontologies/dspace/0.1.0#hasCommunity

In
fo
r
m
ati
o
n
al
N
ot
e:

Defines the predicates used to link from the data representing the whole repository to the top level communities. Defining multiple predicates
separated by commas will result in multiple triples.

Pr
o
p
er
ty:

rdf.simplerelations.community2site

E
xa
m
ple

V
al
u
e:

rdf.simplerelations.community2site = , http://purl.org/dc/terms/isPartOf http://digital-repositories.org/ontologies/dspace/0.1.0#isPartOfRepository

In
fo
r
m
ati
o
n
al
N
ot
e:

Defines the predicates used to link from the top level communities to the data representing the whole repository. Defining multiple predicates
separated by commas will result in multiple triples.

Pr
o
p
er
ty:

rdf.simplerelations.community2subcommunity

E
xa
m
ple

V
al
u
e:

rdf.simplerelations.community2subcommunity = , http://purl.org/dc/terms/hasPart http://digital-repositories.org/ontologies/dspace/0.1.0
#hasSubcommunity

In
fo
r
m
ati
o
n
al
N
ot
e:

Defines the predicates used to link from communities to their subcommunities. Defining multiple predicates separated by commas will result in
multiple triples.

Pr
o
p
er
ty:

rdf.simplerelations.subcommunity2community

http://purl.org/dc/terms/isPartOf
http://digital-repositories.org/ontologies/dspace/0.1.0#isPartOfRepository
http://purl.org/dc/terms/hasPart
http://digital-repositories.org/ontologies/dspace/0.1.0#hasSubcommunity
http://digital-repositories.org/ontologies/dspace/0.1.0#hasSubcommunity

E
xa
m
ple

V
al
u
e:

rdf.simplerelations.subcommunity2community = , http://purl.org/dc/terms/isPartOf http://digital-repositories.org/ontologies/dspace/0.1.0
#isSubcommunityOf

In
fo
r
m
ati
o
n
al
N
ot
e:

Defines the predicates used to link from subcommunities to the communities they belong to. Defining multiple predicates separated by commas will
result in multiple triples.

Pr
o
p
er
ty:

rdf.simplerelations.community2collection

E
xa
m
ple

V
al
u
e:

rdf.simplerelations.community2collection = , http://purl.org/dc/terms/hasPart http://digital-repositories.org/ontologies/dspace/0.1.0#hasCollection

In
fo
r
m
ati
o
n
al
N
ot
e:

Defines the predicates used to link from communities to their collections. Defining multiple predicates separated by commas will result in multiple
triples.

Pr
o
p
er
ty:

rdf.simplerelations.collection2community

E
xa
m
ple

V
al
u
e:

rdf.simplerelations.collection2community = , http://purl.org/dc/terms/isPartOf http://digital-repositories.org/ontologies/dspace/0.1.0
#isPartOfCommunity

In
fo
r
m
ati
o
n
al
N
ot
e:

Defines the predicates used to link from collections to the communities they belong to. Defining multiple predicates separated by commas will result
in multiple triples.

http://purl.org/dc/terms/isPartOf
http://digital-repositories.org/ontologies/dspace/0.1.0#isSubcommunityOf
http://digital-repositories.org/ontologies/dspace/0.1.0#isSubcommunityOf
http://purl.org/dc/terms/hasPart
http://digital-repositories.org/ontologies/dspace/0.1.0#hasCollection
http://purl.org/dc/terms/isPartOf
http://digital-repositories.org/ontologies/dspace/0.1.0#isPartOfCommunity
http://digital-repositories.org/ontologies/dspace/0.1.0#isPartOfCommunity

Pr
o
p
er
ty:

rdf.simplerelations.collection2item

E
xa
m
ple

V
al
u
e:

rdf.simplerelations.collection2item = , http://purl.org/dc/terms/hasPart http://digital-repositories.org/ontologies/dspace/0.1.0#hasItem

In
fo
r
m
ati
o
n
al
N
ot
e:

Defines the predicates used to link from collections to their items. Defining multiple predicates separated by commas will result in multiple triples.

Pr
o
p
er
ty:

rdf.simplerelations.item2collection

E
xa
m
pl
e
V
al
u
e:

rdf.simplerelations.item2collection = , http://purl.org/dc/terms/isPartOf http://digital-repositories.org/ontologies/dspace/0.1.0#isPartOfCollection

In
fo
r
m
ati
o
n
al
N
ot
e:

Defines the predicates used to link from items to the collections they belong to. Defining multiple predicates separated by commas will result in
multiple triples.

Pr
o
p
er
ty:

rdf.simplerelations.item2bitstream

E
xa
m
ple

V
al
u
e:

rdf.simplerelations.item2bitstream = , http://purl.org/dc/terms/hasPart http://digital-repositories.org/ontologies/dspace/0.1.0#hasBitstream

http://purl.org/dc/terms/hasPart,%5C%22%20data-mce-href=
http://digital-repositories.org/ontologies/dspace/0.1.0#hasItem
http://purl.org/dc/terms/isPartOf,
http://digital-repositories.org/ontologies/dspace/0.1.0#isPartOfCollection
http://purl.org/dc/terms/hasPart,%5C%22%20data-mce-href=
http://digital-repositories.org/ontologies/dspace/0.1.0#hasBitstream

In
fo
r
m
ati
o
n
al
N
ot
e:

Defines the predicates used to link from item to their bitstreams. Defining multiple predicates separated by commas will result in multiple triples.

[dspace-source]/dspace/config/modules/rdf/constant-data-*.ttl

As described in the documentation of the configuration file [dspace-source]/dspace/config/modules/rdf.cfg, the constant-data-*.ttl files can be used to add
static RDF to the converted data. The data are written in Turtle, but if you change the file suffix (and the path to find the files in) you can use any rdf.cfg
other RDF serialization you like to. You can use this, for example, to add a link to the public readable SPARQL endpoint, add a link to the repository
homepage, or add a triple to every community or collection defining it as an entity of a specific type like a bibo:collection. The content of the file [dspace-
source]/dspace/config/modules/rdf/constant-data-general.ttl will be added to every DSpaceObject that is converted. The content of the file [dspace-source]
/dspace/config/modules/rdf/constant-data-community.ttl to every community, the content of the file [dspace-source]/dspace/config/modules/rdf/constant-
data-collection.ttl to every collection and the content of the file [dspace-source]/dspace/config/modules/rdf/constant-data-item.ttl to every Item. You can use
the file [dspace-source]/dspace/config/modules/rdf/constant-data-site.ttl to specify data representing the whole repository.

[dspace-source]/dspace/config/modules/rdf/metadata-rdf-mapping.ttl

This file should contain several metadata mappings. A metadata mapping defines how to map a specific metadata field within DSpace to a triple that will
be added to the converted data. The MetadataConverterPlugin uses these metadata mappings to convert the metadata of a item into RDF. For every
metadata field and value it looks if any of the specified mappings matches. If one does, the plugin creates the specified triple and adds it to the converted
data. In the file you'll find a lot of examples on how to define such a mapping.

For every mapping a metadata field name has to be specified, e.g. dc.title, dc.identifier.uri. In addition you can specify a condition that is matched against
the field's value. The condition is specified as a regular expression (using the syntax of the java class java.util.regex.Pattern). If a condition is defined, the
mapping will be used only on fields those values which are matched by the regex defined as condition.

The triple to create by a mapping is specified using reified RDF statements. The defines some placeholders DSpace Metadata RDF Mapping Vocabulary
that can be used. The most important placeholder is dm:DSpaceObjectIRI which is replaced by the URI used to identify the entity being converted to RDF.
That means if a specific Item is converted the URI used to address this Item in RDF will be used instead of dm:DSpaceObjectIRI. There are three
placeholders that allow reuse of the value of a meta data field. dm:DSpaceValue will be replace by the value as it is. dm:LiteralGenerator allows one to
specify a regex and replacement string for it (see the syntax of the java classes java.util.regex.Pattern and java.util.regex.Matcher) and creates a Literal
out of the field value using the regex and the replacement string. dm:ResourceGenerator does the same as dm:LiteralGenerator but it generates a HTTP
(S) URI that is used in place. So you can use the resource generator to generate URIs containing modified field values (e.g. to link to classifications). If you
know regular expressions and turtle, the syntax should be quite self explanatory.

[dspace-source]/dspace/config/modules/rdf/fuseki-assembler.ttl

This is a configuration for the triple store Fuseki of the Apache Jena project. You can find more information on the configuration it provides in the section Ins
 above.tall a Triple Store

[dspace-source]/dspace/config/spring/api/rdf.xml

This file defines which classes are loaded by DSpace to provide the RDF functionality. There are two things you might want to change: the class that is
responsible to generate the URIs to be used within the converted data, and the list of Plugins used during conversion. To change the class responsible for
the URIs, change the following line:

<property name="generator" ref="org.dspace.rdf.storage.LocalURIGenerator"/>

This line defines how URIs should be generated, to be used within the converted data. The LocalURIGenerator generates URIs using the ${dspace.url}
property. The HandleURIGenerator uses handles in form of HTTP URLs. It uses the property ${handle.canonical.prefix} to convert handles into HTTPS
URLs. The class org.dspace.rdf.storage.DOIURIGenerator uses DOIs in the form of HTTP URLs if possible, or local URIs if there are no DOIs. It uses the
DOI resolver " " to convert DOIs into HTTP URLs. The class org.dspace.rdf.storage.DOIHandleGenerator does the same but uses Handles http://dx.doi.org
as fallback if no DOI exists. The fallbacks are necessary as DOIs are currently used for Items only and not for Communities or Collections.

All plugins that are instantiated within the configuration file will automatically be used during the conversion. Per default the list looks like the following:

http://digital-repositories.org/ontologies/dspace-metadata-mapping/
http://dx.doi.org

<!-- configure all plugins the converter should use. If you don't want to
 use a plugin, remove it here. -->
 <bean id="org.dspace.rdf.conversion.SimpleDSORelationsConverterPlugin" class="org.dspace.rdf.conversion.
SimpleDSORelationsConverterPlugin"/>
 <bean id="org.dspace.rdf.conversion.MetadataConverterPlugin" class="org.dspace.rdf.conversion.
MetadataConverterPlugin"/>
 <bean id="org.dspace.rdf.conversion.StaticDSOConverterPlugin" class="org.dspace.rdf.conversion.
StaticDSOConverterPlugin"/>

You can remove plugins if you don't want them. If you develop a new conversion plugin, you want to add its class to this list.

Maintenance

As described you should add to the property and in dspace.cfg. This configures DSpace to above rdf event.dispatcher.default.consumers
automatically update the triple store every time the publicly available content of the repository is changed. Nevertheless there is a command line tool that
gives you the possibility to update the content of the triple store. As the triple store is used as a cache only, you can delete its content and reindex it every
time you think it is necessary of helpful. The command line tool can be started by the following command which will show its online help:

[dspace-install]/bin/dspace rdfizer --help

The online help should give you all necessary information. There are commands to delete one specific entity; to delete all information stored in the triple
store; to convert one item, one collection or community (including all subcommunities, collections and items) or to convert the complete content of your
repository. If you start using the Linked Open Data support on a repository that already contains content, you should run [dspace-install]/bin

 once./dspace rdfizer --convert-all

Every time content of DSpace is converted or Linked Data is requested, DSpace will try to connect to the triple store. So ensure that it is running (as you
do with e.g. your sevlet container or relational database).

	Linked (Open) Data

