
Copy of Design - Asynchronous REST API

Proposed Asynchronous Pattern
Initial Request

Without any special client knowledge:
With an asynchronous-aware client:
Asynchronous response modes:

Example (Get content; polling)
Example (Get content; notify)
Example (Get content; response)

Use Cases
Batch Upload
Get Content (delivered somewhere else)
Delete Content (immediately, don't block)
Run fixity check
SPARQL Update
Execute LDPath Query
Export / Import
Backup / Restore

Discussion

Proposed Asynchronous Pattern
Polling and Notification (see)UCAR reference

Initial Request

Without any special client knowledge:

Client makes a request, e.g. "GET /some/resource"

Branch:

 - Server requires asynchronous, responds with 4xx

 - Server doesn't require asynchronous, blocks, and proceeds as normal.

With an asynchronous-aware client:

Client makes a request, e.g. "GET /some/resource" and accepts asynchronous response with HTTP headers:

 - Accept-Asynchronous: polling
 - Accept-Asynchronous: notify; Asynchronous-end-point: http://some-webhooks-uri/

 - Accept-Asynchronous: response; Asynchronous-end-point: http://some-webhooks-uri/

If the server decides not to send an asynchronous response, blocks and proceeds as normal.

If the server wants to send an asynchronous response, server responses with status 202 (ACCEPTED).

Asynchronous response modes:

If the client sends "Accept-Asynchronous: polling", the server will provide a URL for the client to poll for request status. When done processing, the server
will send a 301 to the request body.

If the client sends "Accept-Asynchronous: notify", when the server is done processing, the server will send a webhooks-style POST request to the provided
endpoint with metadata about the response (response size, what request generated it, etc)

If the client sends "Accept-Asynchronous: response", when the server is done processing, the server will POST the generated response body to the
provided endpoint.

Example (Get content; polling)

Client makes a request:

GET /some/object/fcr:content
 Accept-Asynchronous: polling

http://www.unidata.ucar.edu/staff/edavis/notes/asynchHTTP-survey.html
http://some-webhooks-uri/

1.

Server sends a 202 (Accepted) response with a location for the client to poll for status

HTTP/1.0 202
Location: /fcr:status/123456789

Client polls location for status

GET /fcr:status/123456789

Server should send a useful status response, in a serialization TBD. When done processing, server should send a redirect to the result.

HTTP/1.0 301
Location: /fcr:status/123456789/fcr:content
Expires: (+24 hours?)

Client can pick up the response:

GET /fcr:status/123456789/fcr:content

The server MAY cache the content response (if appropriate) for some length of time. The server MAY also expose the cached response at the original
request endpoint (e.g. /some/object/fcr:content could response immediately instead of requiring asynchronous interactions)

Example (Get content; notify)

TODO

Example (Get content; response)

TODO

Use Cases

Batch Upload

Get Content (delivered somewhere else)

Delete Content (immediately, don't block)

Run fixity check

SPARQL Update

Execute LDPath Query

Export / Import

Backup / Restore

Discussion

References
http://www.infoq.com/news/2009/07/AsynchronousRest
http://www.tbray.org/ongoing/When/200x/2009/07/02/Slow-REST
http://www.adayinthelifeof.nl/2011/06/02/asynchronous-operations-in-rest/

http://www.infoq.com/news/2009/07/AsynchronousRest
http://www.tbray.org/ongoing/When/200x/2009/07/02/Slow-REST
http://www.adayinthelifeof.nl/2011/06/02/asynchronous-operations-in-rest/

1.

2.

3.

https://community.jboss.org/message/823036#823036
http://www.unidata.ucar.edu/staff/edavis/notes/asynchHTTP-survey.html

Regarding async HTTP-API
"For any and all PUT/POST/DELETE operations, we return “202 In progress” and a new “Status” resource, which contains a 0-to-100
progress indicator, a target_uri for whatever’s being operated on, an op to identify the operation, and, when progress reaches 100, status
and message fields to tell how the operation came out.
The idea is that this is designed to give a hook that implementors can make cheap to poll.
However, since most of the clients with which we are concerned will be machines and not browsers, we could use webhooks for the
purpose.

JAX-RS-2.0 has the async notion built into its Client spec
Jersey reference implementation: https://jersey.java.net/documentation/latest/async.html

https://community.jboss.org/message/823036#823036
http://www.unidata.ucar.edu/staff/edavis/notes/asynchHTTP-survey.html
https://jersey.java.net/documentation/latest/async.html

	Copy of Design - Asynchronous REST API

