
1.

2.

3.

4.

a.

5.
6.
7.

8.

9.

1.

a.
b.
c.

2.
3.
4.
5.
6.
7.
8.

9.

Design - WebAccessControl Authorization Delegate
This page will be used to design a Authorization Delegate.WebAccessControl

Use Cases
Phase 1
Phase 2 - proposed
Removed/Amended Use Cases

Amended
Removed

Questions arising from use cases
Proposed Requirements (Phase 1)

Sprint 1 (Phase I) Requirements
Sprint 2 (Phase I) Requirements

Must have
Nice to have
Likely not

Removed requirements
Finding the effective policy set

Finding the effective ACL
Resolving the effective policy from an ACL

Authentication Considerations
Open Questions
Role Commitments

Development
Stakeholder

Related Documents

Use Cases

Phase 1

As a user from the Registrar office creates an Asset with a loan agreement document, the user assigns a property to the asset indicating that the
asset is restricted to the Registrar staff, the user (a member of the Registrar group) should not be locked out of viewing/editing the resource.
A user wishes to create multiple resources that all share access restrictions. The user is able to create a single access control list that is used by
that group of resources. In addition, they do not have to explicitly link to the ACL from every resource; the appropriate ACL is inferred from the
collection a resource is a member of (collection defined as a resource that the target resource) or the class(es) it is an instance of. ldp:contains
There is a collection that is by default restricted access. However, there are a selection of resources within that collection that are publicly
available. These public resources are not necessarily grouped together in a single hierarchy within the collection.
An unauthenticated user requests a protected resource. The system presents them with an authentication challenge. The user successfully
authenticates, and it is determined that they have read access to the requested resource. The system retrieves and presents the resource to the
user.

Some means of simulating this scenario will have to be devised for testing purposes, since presumably the test Vagrant will not be
connected to an authentication service.

An authorized user must be able to change which ACL applies to a given resource or group of resources without moving those resources.
An authorized user must be able to edit an ACL in place in order to update the policy that applies to all resources governed by that ACL.
An ACL should be its own ACL; thus, a user who has read (or write) access to a given ACL should be able to read (or write) to that ACL. A user
who has no access according to a given ACL should not be able to view the ACL.
A collection of books has an ACL that allows anonymous read access. One book within that collection (book A) has more restrictive access rules
(i.e. only certain authorized users can read it), and these rules are defined in a different ACL that book A points to. Another book in the same
collection (book B) points to no ACL directly, but should be governed by the ACL of the parent collection. When an anonymous user attempts to
access book A, access should be denied (due to the ACL that book A points to), but when the same user tries to access book B, access is
allowed by virtue of the ACL that the parent collection points to.
The opposite scenario to #8 above – i.e. where the collection has rules and the child book has rules – should more restrictive more permissive
also be possible by simply reversing the two ACLs.

Phase 2 - proposed

A resource can be related to tags. Each tag is contained in a tag category: Conservation, Imaging, Licensing, etc. For tags related to a certain
resource:

Imaging users can read, create and delete tags in Imaging category
Imaging users can read tags in Conservation category
Conservation users can read, create and delete tags in Conservation and Imaging categories
Note: F4 does not have "tags" per se. Are you envisioning a "tag" as a resource? or a property?
See comment below

Enforce ACLs on binary resources
Add support for external ACL resources (resources that point to an ACL that is outside the Fedora domain)
Add support for external agentClass graphs
Enforce ACLs on ACL resources with a filesystem-based backstop (at present, only the admin user can add/edit ACLs)
Verify header-based (delegated) authentication use cases
Add ACL URIs to response headers as Link: <acl-uri>; rel=meta
Implement and modesacl:Control acl:Append

https://www.w3.org/wiki/WebAccessControl
http://www.w3.org/TR/ldp/#dfn-containment-triples
https://wiki.duraspace.org/display/FF/Design+-+WebAccessControl+Authorization+Delegate?focusedCommentId=69829630#comment-69829630

9.

1.

a.

1.

a.
2.

a.

1.

a.
2.

a.

1.
a.

i.
ii.
iii.

b.
i.
ii.

c.
d.

2.
3.

a.
i.

b.

4.
a.

5.
a.

6.

7.

Add support for inclusion of other acls via acl:include

Removed/Amended Use Cases

Amended

Phase 1, #2 - A user wishes to create multiple resources that all share access restrictions. The user is able to create a single access control list
that is used by that group of resources. In addition, they do not have to explicitly link to the ACL from every resource; the appropriate ACL is
inferred from the collection a resource is a member of, the class(es) is is an instance of, . or other metadata associated with the resource

Amended to remove the underlined context above and to define " " as a resource which ldp:contains the target.is a member of

Removed

An unauthenticated user requests a publicly readable resource. The system retrieves and presents the resource to the user without any
authentication challenge.

See this comment below
It should be possible to create an ACL that changes over time without user intervention (e.g. an embargo policy).

This type of operations should make use of the proposed and a front-end web service to handle expiration of API extension architecture
policies and leave Fedora to only apply the policies at the time of the request.

Questions arising from use cases

Given these multiple ways of inferring which ACLs apply to a given resource (via collection, class, or other metadata), there must be clear rules
for determining the precedence of policies and for resolving conflicts between policies.

See below.Finding the effective policy set
In the interest of security, the absence of an applicable ACL should result in denial of Create, Update, and Delete requests (and possibly also
Read requests?) to non-admin users, but should allow all CRUD operations to admin users.

the absence of an applicable ACL will result in denial of all requests.

Proposed Requirements (Phase 1)

Legend

 Completed
 Not yet completed

Sprint 1 (Phase I) Requirements

 F4 MUST allow assertions about authorization to be modeled in RDF in accordance with the specification.WebAccessControl
Access assertions to be implemented are

 READ -> GET a resource
 WRITE -> PUT/POST/PATCH/DELETE a resource
 APPEND -> PATCH a resource, restricted to Insert statements only.

as well as extending for:
 DELETE -> DELETE a resource
 UPDATE -> PUT/POST a resource

 The implementation assumes an ACL is it's own ACL, therefore CONTROL will not be implemented at this time.
Optional extensions (ie. regex matching) will not be implemented in Phase 1.

 F4 MUST be able to enforce authorization based on WebAC when a resource is requested via the REST-API
 F4 MUST allow authorization policies to apply to a group of resources which consists of:

 Resources sharing a rdf:type attribute matching an acl:accessToClass rule in an ACL in the preconfigured location.
Note: sprint-1 implementation does not confine ACLs to reside in a "preconfigured location", but they can instead exist
anywhere within the repository.

 Resources (without their own specific policy) share the policy of their container (defined as the resource which ldp:contains the
target).

 F4 MUST honor the most permissive authorization policy when multiple policies apply to a request.
See the section , for more clarity.Finding the effective policy set

 F4 MUST provide a way for external services such as Solr to enforce the authorization rules defined in the repository.
Would one method of achieving this be to create separate solr cores for public users vs. admin users and publish only the public
resources to the former and everything to the latter, or does the use case dictate more granular distinctions?

 Each request for a Web Resource returns an HTTP document containing a Link header () to an ACL resource which describes Link: <>; rel=acl
access to the given resource and potentially others.

 Servers are required to recognize the class foaf:Agent as the class of all agents (i.e. foaf:Agent is synonymous with "everyone")

Sprint 2 (Phase I) Requirements

https://wiki.lyrasis.org/display/FF/Design+-+API+Extension+Architecture
https://www.w3.org/wiki/WebAccessControl

1.

a.

2.

a.

3.

a.

b.

4.

a.

5.

a.

b.

c.

6.

a.

7.

a.

8.

a.

9.

a.

b.

10.

a.

1.

a.

2.
3.
4.

a.

1.

1.
a.
b.

1.

a.
2.

a.
b.

3.
4.

Must have

Enforce ACLs on ACL resources with filesystem-based backstop:

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Implement acl:Control, acl:Append, acl:Update and acl:Delete modes:

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

F4 MUST provide a way for external services such as Solr to enforce the authorization rules defined in the repository:

Unable to locate Jira server for this macro. It may be due to Application Link configuration. and

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Enforce ACLs on binary files:

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

More documentation:

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Add support for agentClass graphs defined within F4:

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Verify header-based (delegated) authentication is supported (where headers are used to define the effective agent, independent of any container-
based AuthN):

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Fix bug with versioned resources:

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Make webac and audit default configuration in fcrepo-webapp-plus:

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Bug fixes

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Nice to have

Add ACL uris to response headers as "Link: <acl-uri>; rel=acl":

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Support external ACLs (ACLs not managed by fedora)
Add support for agentClass graphs defined external to F4
Minor code cleanup:

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Likely not

Support for inclusion of other ACLs via acl:include

Removed requirements

F4 resources that are open for public read should not challenge the client to authenticate
What if a resource has no ACL? Should there be a default behavior? (for example allow all to admin user; deny all to non-admin?)
This requirement specifies public *read*. Do we also want to allow a public write? While use cases for the latter are admittedly going to
be rare, it would seem better not to be opinionated here if public write is what an implementer wants.

See for more information on this removal.this comment below

Finding the effective policy set

Finding the effective ACL

Use ACL that directly references target resource, if exists, else

if multiple ACLs apply to a given target resource, the most permissive is used.
Use ACL from configured location that has policy for target resource class, if exists, else

if multiple ACLs apply to a given class, the most permissive is used.
 statements in ACLs in the configured location are ignored.accessToClass not

Recursively follow steps 1 and 2 for parent resource that ldp:contains target resource, if exists, else
Deny access

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

1.
2.

a.
3.

1.

2.

1.

Resolving the effective policy from an ACL

Use policy that specifies requesting , if exists, elseuserId
Use policy that specifies requesting , if exists, elsegroupId

Note, if multiple requesting groupIds have policies, use the one that grants the most access.
Deny access

Authentication Considerations
[NOTE: This section has been stricken because it is not germane to the specific effort to develop a WebACL authorization delegate; the authentication
considerations described below need to be part of the larger configuration of the ways Fedora and the web server interact, but that is a separate issue.]

Fedora 4 always assumes that any incoming request has always been authenticated by the container (or other layers above it in the stack). Therefore,
these considerations may not be central to the design of a new authorization delegate; however, I (peichman) do believe they represent an important part
of setting up a Fedora instance (beyond just the core servlet code) and should be addressed in some form.

Authorization logic should be capable of evaluating four pieces of information about a given request: (1) Origin (IP address), (2) identity of
requester (or anonymous if not authenticated), (3) the resource being requested, and (4) the method or action of the request (read/write, GET
/POST, etc.).
After evaluating the WebACL policies that apply to the requested resource against the four pieces of information listed above, the application
should return one of three responses: (1) fulfill the request, (2) prompt the user to authenticate, or (3) deny the request.

Open Questions
Is there anything currently implemented within the Hydra WebAC implementation that strays from direct compatibility with the WebAC standard?
In other words, are there currently barriers to the goal of cross-application compatibility?

Role Commitments

Development

Peter Eichman
Mohamed Mohideen Abdul Rasheed
Jared Whiklo
Unknown User (acoburn)

Stakeholder

Joshua Westgard
Stefano Cossu
Nick Ruest

Related Documents
https://www.w3.org/wiki/WebAccessControl (note that this is still a wiki, not yet a draft let alone a standard)

 (a note only)http://www.w3.org/TR/2014/NOTE-ldp-acr-20140916/
https://github.com/duraspace/pcdm/wiki#webacl
Authorization Delegates
http://www.w3.org/ns/auth/acl
Hydra implementation of WebAC

https://github.com/projecthydra/hydra-head/blob/master/hydra-access-controls/app/models/hydra/access_controls/permission.rb
https://github.com/projecthydra/hydra-head/blob/master/hydra-access-controls/app/models/hydra/access_controls/access_control_list.rb
https://github.com/projecthydra/hydra-head/wiki/Access-Controls-with-Hydra

https://wiki.duraspace.org/display/~peichman-umd
https://wiki.duraspace.org/display/~mohideen
https://wiki.duraspace.org/display/~whikloj
https://wiki.lyrasis.org/display/~acoburn
https://wiki.duraspace.org/display/~westgard
https://wiki.duraspace.org/display/~scossu
https://wiki.lyrasis.org/display/~nruest
https://www.w3.org/wiki/WebAccessControl
http://www.w3.org/TR/2014/NOTE-ldp-acr-20140916/
https://github.com/duraspace/pcdm/wiki#webacl
https://wiki.duraspace.org/display/FEDORA4x/Authorization+Delegates
http://www.w3.org/ns/auth/acl
https://github.com/projecthydra/hydra-head/blob/master/hydra-access-controls/app/models/hydra/access_controls/permission.rb
https://github.com/projecthydra/hydra-head/blob/master/hydra-access-controls/app/models/hydra/access_controls/access_control_list.rb
https://github.com/projecthydra/hydra-head/wiki/Access-Controls-with-Hydra

	Design - WebAccessControl Authorization Delegate

