AIC Use Case: Content Modeling

Title (Goal) Content modeling

Primary Actor Developer

Scope Application

Level Summary

Author Stefano Cossu

Story (A paragraph or two describing what Configuration-based content modeling that allows specifying services and schemata related to
happens) specific resource types

| want to be able to CRUD complex resources with a single or a minimal set of requests, without:

* Performing complex and repetitive tasks on the client side, such as querying an UID minter, transforming resources to generate standard
derivatives, extract metadata, etc.

® Knowing everything about the schema that the resource metadata are stored in

® Rewriting complex implementation routines for each client connecting to my Fedora repo.

I should specify a "content model” (e.g. an RDF type) for each resource that | CRUD and have predefined metadata schemata for ingestion and retrieval,
customizable event hooks related to individual HTTP methods, and validation rules (see related use case)

| want to be able to retrieve some machine-readable documentation for each content type, for individual HTTP methods, e.g. schema information indicating
which properties are expected for a specific HTTP method on a specific "content model", data type and cardinality of each property, etc.

Ideally, | would be able to achieve all of the above without using any code, i.e. by wiring content models to services and schemata by means of transparent
configuration files.

Example
For a given “myns:Image” content model the service configuration would define the following actions related to distinct HTTP methods:
* GET:

© Return a representation of the resource and related resources according to a “default” transform program defined for myns:Image and an
output format
© This may include complex networks involving SPARQL or Solr queries on the indexes
© The transform program name is indicated in a request parameter; the output format as an "Accept" request header
© Image metadata are retrieved from a Solr or triplestore index, the image content can come straight from the Fedora repo or a server
performing a transformation on the original resource (e.g. llIF-compatible image server).
® POST:

Create a new UID from an external UID minter service;

create a pcdm:Object resource and populate it with metadata provided by a JSON object in the “metadata” POST field,;
add the new generated UID;

assign the resource the “myns:image” rdf type;

create pcdm:Object resource and assign it a “myns:Instance” rdf type;

create a “myns:hasOriginallnstance” relationship between the myns:Image and the myns:Instance resources;

Create a LDP-NR resource from the “original” bitstream provided by POST

Create a “pcdm:hasFile” relationship between the myns:Instance and the LDP-NR

Repeat this for other possible binaries provided by the request

Optionally wrap the whole operation in a transaction and roll back if a step fails.

O O O O O 0O O 0O O O


https://wiki.lyrasis.org/display/~scossu
https://wiki.lyrasis.org/display/FF/AIC+Use+Case%3A+Content+and+Structural+Validation

	AIC Use Case: Content Modeling

