
AIC Use Case: Content Modeling
Title (Goal) Content modeling

Primary Actor Developer

Scope Application

Level Summary

Author Stefano Cossu

Story (A paragraph or two describing what 
happens)

Configuration-based content modeling that allows specifying services and schemata related to 
specific resource types

I want to be able to CRUD complex resources with a single or a minimal set of requests, without:

Performing complex and repetitive tasks on the client side, such as querying an UID minter, transforming resources to generate standard 
derivatives, extract metadata, etc.
Knowing everything about the schema that the resource metadata are stored in
Rewriting complex implementation routines for each client connecting to my Fedora repo.

I should specify a "content model" (e.g. an RDF type) for each resource that I CRUD and have predefined metadata schemata for ingestion and retrieval, 
customizable event hooks related to individual HTTP methods, and validation rules (see related )use case

I want to be able to retrieve some machine-readable documentation for each content type, for individual HTTP methods, e.g. schema information indicating 
which properties are expected for a specific HTTP method on a specific "content model", data type and cardinality of each property, etc.

Ideally, I would be able to achieve all of the above without using any code, i.e. by wiring content models to services and schemata by means of transparent 
configuration files.

Example

For a given “myns:Image” content model the service configuration would define the following actions related to distinct HTTP methods:

GET:

Return a representation of the resource and related resources according to a “default” transform program defined for myns:Image and an 
output format
This may include complex networks involving SPARQL or Solr queries on the indexes
The transform program name is indicated in a request parameter; the output format as an "Accept" request header
Image metadata are retrieved from a Solr or triplestore index, the image content can come straight from the Fedora repo or a server 
performing a transformation on the original resource (e.g. IIIF-compatible image server).

POST:

Create a new UID from an external UID minter service;
create a pcdm:Object resource and populate it with metadata provided by a JSON object in the “metadata” POST field;
add the new generated UID;
assign the resource the “myns:Image” rdf type;
create pcdm:Object resource and assign it a “myns:Instance” rdf type;
create a “myns:hasOriginalInstance” relationship between the myns:Image and the myns:Instance resources;
Create a LDP-NR resource from the “original” bitstream provided by POST
Create a “pcdm:hasFile” relationship between the myns:Instance and the LDP-NR
Repeat this for other possible binaries provided by the request
Optionally wrap the whole operation in a transaction and roll back if a step fails.

 

https://wiki.lyrasis.org/display/~scossu
https://wiki.lyrasis.org/display/FF/AIC+Use+Case%3A+Content+and+Structural+Validation

	AIC Use Case: Content Modeling

