
Adding OpenSocial gadgets to VIVO

Installing and Configuring
Create database tables and procedures
Create configuration directory and key file
Modify Tomcat settings
Configure VIVO
Run the deployment script
Does it work?

Startup tests
Search page
Profile page
Troubleshooting

Changing the gadget configurations
The orng_apps database table
The orng_app_views database table

Additional Considerations
Re-running the deployment script
Resetting the gadget cache
Issues with Linked Open Data
Disabling the OpenSocial gadgets

Disable the gadgets
Disable the connection
Remove the OpenSocial webapp from Tomcat
Clean up the remnants

Instructions for connecting VIVO and Open Research Networking Gadgets

This document contains instructions on how to configure your VIVO installation to use OpenSocial gadgets.

VIVO uses an extension of the OpenSocial protocols called Open Research Networking Gadgets, or ORNG. ORNG is a project of the Clinical &
Translational Science Institute at the University of California, San Francisco. You can find out more about the ORNG project at their web site, http://www.
opengadgets.org/index.html

ORNG supports gadgets using a modified version of Apache Shindig. These instructions tell you how to install the Shindig-ORNG web application, and
how to configure it to work with VIVO.

Note: these instructions assume that you will be installing VIVO on Tomcat using the standard installation procedure. VIVO does not yet support ORNG on
containers other than Tomcat.

Installing and Configuring
Configuring VIVO to support ORNG requires several steps, including additions to the VIVO properties, modifications to Tomcat, creating a security key for
safe network operations, and running a build script.

Create database tables and procedures

Shindig-ORNG uses several database tables in MySQL to store its data: which gadgets appear on which pages, how large are the gadgets, what
information applies to each individual, and more. Shindig-ORNG also creates stored procedures in MySQL. These are small pieces of code that simplify
the use of the database tables.

In the VIVO distribution directory, a file called contains SQL commands that create the tables vitro-core/opensocial/shindig_orng_tables.sql
and stored procedures for Shindig-ORNG to use.

Tell MySQL to process this file with a command like this:

mysql -u -p < username database sql_file

So, if your current directory is the VIVO distibution directory, and your VIVO database is and your MySQL user account is , then you vivoDb vivoUser
might use the command this way:

mysql -u vivoUser -p vivoDb < vitro-core/opensocial/shindig_orng_tables.sql

MySQL will prompt you for the password for your MySQL user account, and then process the file.

You may want to start your gadget collection with some example gadgets that have been developed by the ORNG group. The file called vitro-core
 contains SQL commands that will add these gadgets to your system's configuration./opensocial/shindig_example_gadgets.sql

If you want to load these example gadgets, you can use a command similar to the previous one:

http://www.opengadgets.org/index.html
http://www.opengadgets.org/index.html

mysql -u vivoUser -p vivoDb < vitro-core/opensocial/shindig_example_gadgets.sql

As before, MySQL will prompt you for the password for your MySQL user account, and then process the file.

Create configuration directory and key file

In your VIVO home directory, create a directory called . Under that, create directories called and . Your VIVO home directory will look shindig conf openssl
something like this:

 [VIVO home directory]
 |
 |--shindig
 | |
 | |--conf
 | |
 | |--openssl
 |
 |--solr
 |
 |--uploads

Shindig-ORNG uses an encryption key to insure that the communication between the gadget and the server is secure. You should create a file that
contains the encryption key, and store that file in the directory that you created.shindig/openssl

On Unix-based systems (like Linux or Mac OS X), this command will create an encryption key from a random seed:

dd if=/dev/random bs=32 count=1 | openssl base64 > [key-file]

For example, if your VIVO home directory is , you might use the command this way:/usr/local/vivo/data

dd if=/dev/random bs=32 count=1 | openssl base64 > /usr/local/vivo/data/shindig/openssl/securitytokenkey.txt

If your VIVO installation is installed on a machine that runs Microsoft Windows, you will need to find another way to create an encryption key. The easiest
way might be to find a Unix-based machine, issue the command above, and copy the resulting file to your Windows machine.

Modify Tomcat settings

The Shindig-ORNG application must know where to find the configuration file that you created in Step I. It must also know its own URL, so that URL can
be inserted into the gadgets.

This information is provided through startup parameters in Tomcat. With most installations of Tomcat, the "setenv.sh" or "setenv.bat" file in Tomcat's bin
directory is a convenient place to set these parameters. If this file does not exist in Tomcat's bin directory, you can create it.

Here is an example of the setenv.sh file, showing only the Shindig-ORNG requirements:

export CLASSPATH=/usr/local/vivo/data/shindig/conf
export CATALINA_OPTS="-Dshindig.host=localhost -Dshindig.port=8080"

Here is the equivalent file for an installation in Windows.

set CLASSPATH=C:\vivo\data\shindig\conf
set CATALINA_OPTS=-Dshindig.host=localhost -Dshindig.port=8080

This assumes that your setenv file was empty before starting this process, and that you used the default location for the Shindig-ORNG configuration file in
Step I. In fact, it's more common for the setenv file to contain other parameters besides those used for Shindig-ORNG. In that case, it might look more like
this:

export CLASSPATH=/usr/local/vivo/data/shindig/conf
export CATALINA_OPTS="-Dshindig.host=localhost -Dshindig.port=8080 -Djava.awt.headless=true -Xms1024m -Xmx1024m
-XX:MaxPermSize=128m"

Or, for Windows:

set CLASSPATH=C:\vivo\data\shindig\conf
set CATALINA_OPTS=-Dshindig.host=localhost -Dshindig.port=8080 -Djava.awt.headless=true -Xms1024m -Xmx1024m -XX:
MaxPermSize=128m

Configure VIVO

In the VIVO distribution directory, the file called contains configuration options for the VIVO application. You must set some additional build.properties
parameters so VIVO will be able to communicate with Shindig-ORNG.

For now, these properties must be entered into both and the file in your VIVO home directory.build.properties runtime.properties

Property name OpenSocial.shindigURL

Description The base URL that VIVO will use when contacting the Shindig-ORNG application. Usually, this is the same host and port number as
VIVO itself, with a context path of shindigorng

Default value NONE

Example value http://localhost:8080/shindigorng

Property name OpenSocial.tokenService

Description The host name and port number of the Token Service that Shindig-ORNG creates. Note that a value of or will localhost 127.0.0.1
not work. You must provide the actual host name of your machine, followed by :8777

Default value NONE

Example value myhost.mydomain.edu:8777

Property name OpenSocial.tokenKeyFile

Description The path to a key file that will be used to generate security tokens. This is the file that was created in Step I of this process.

Default value NONE

Example value /usr/local/vivo/data/shindig/openssl/securitytokenkey.txt

Run the deployment script

At the command line, from the top level of the VIVO distribution directory, type:

ant orng

to configure the Shindig-ORNG application and deploy it to Tomcat's webapps directory.

You must restart Tomcat so the main VIVO application will load the new settings.

Does it work?

Startup tests

Start VIVO, and verify that you can see VIVO's home page in a browser.

On startup, VIVO runs a series of self-diagnostics, or "smoke tests". If these tests find any problems with the OpenSocial configuration, you will see a
warning message instead of the VIVO home page.

Some of VIVO's "smoke tests" are run after the startup is finished, and may take up to a minute to complete. If one of these tests fails, you will see the
warning message as you navigate from one VIVO page to the next.

If one of the OpenSocial tests fails, you may continue to use VIVO, but it is likely that no gadgets will be shown. You can review the warning message by
selecting the "Startup Status" link from the "Site Admin" page.

Search page

If you loaded the example gadgets, you should be able to see the "Google Search" gadget on the Search Results page in VIVO.

Every VIVO installation comes with a geographic data model, so type "Chile" in the search box, and view the results. Near the bottom of the page, you
should see the "OpenSocial" section heading, and beneath it, a gadget offering "Full Text Search Results". This gadget does a google search at UCSF,
using the search term that you entered. Again, this gadget is just an example, to show what is possible with OpenSocial gadgets and VIVO.

The first time you bring up the search page, it may take several seconds for the gadget to appear. After the first time, the gadget response should be much
faster.

Profile page

If your VIVO installation contains profiles of people, you can see several gadgets on their profile pages. You must be logged in to VIVO, with authority to
edit the profile you are viewing.

Go to a personal profile page in VIVO. If you loaded the example gadgets, you will see the "OpenSocial" section heading above the property lists, with an
assortment of example gadgets available for experimentation.

As with the search page, the first appearance of the gadgets may be slow.

Troubleshooting

If the gadgets do not appear as you expect, look for these symptoms, and check for the corresponding possible causes.

Symptoms Possible causes

The "OpenSocial" heading does not appear on Individual page or in
search results.
Tomcat log files do not contain errors.

VIVO was not re-deployed with ant deploy after the OpenSocial
values were set in build.properties

Gadgets do not appear on Individual page or in search results.
Tomcat "localhost" log file contains an error message:
Unable to load properties: shindigorng.properties

Configuration file is not correctly named.
Tomcat's setenv file does not specify the correct CLASSPATH

Dialog box appears in the browser with the message: "Error 500
reading application data: internalError"
Tomcat "catalina" log file contains an error message:
java.sql.SQLException: Access denied for user

Configuration file contains incorrect value for one or more of these:
orng.dbURL
orng.dbUser
orng.dbPassword

"Smoke tests" fail at startup.
Token key file for Shindig does not exist

Pages that display gadgets "hang" in the browser.
Tomcat "localhost" log file contains error messages, including:
com.google.inject.CreationException: Guice
creation errors

OpenSocial.tokenKeyFile is not set in , or the file does build.properties
not exist at the specified location.

Gadgets do not appear on Individual page or in search results
vivo.all.log contains an error message:
MySQLSyntaxErrorException: Table 'vivo.orng_apps'
doesn't exist

MySQL does not contain the shindig tables.
shindig_orng_tables.sql

was not processed.

Gadgets do not appear on Individual page or in search results
vivo.all.log contains an error message:
java.net.ConnectException: Connection refused

In , is not set correctly.build.properties OpenSocial.tokenService

Changing the gadget configurations
VIVO will look at tables in MySQL to determine what gadgets should be made available, where they should appear, how big they will be, and much more.
At this time, VIVO doesn't provide a user interface to edit the contents of these tables. Administrators will need to use a MySQL admin client, or SQL
commands, to set these parameters.

The tables are named and , and are described in the following sections.orng_apps orng_app_views

The database tableorng_apps

This table acts as a dictionary of the available gadgets. It includes the name and ID of the gadget and where the source code is stored on the web.

Field Type Usage

appid int(11) Identifies the gadget. In particular, this will be used to determine which rows in the table should apply to orng_app_views
this gadget.

name varchar
(255)

A user-friendly name for the gadget. This will be displayed in the gadget's "Title Bar".

url varchar
(255)

The location where the gadget's contents and behavior are defined.

PersonFilterID int(11) deprecated - usually set to NULL

enabled tinyint(1) If set to 0, this gadget will never be displayed. If set to 1, it is displayed according to the rules in the table.orng_app_views

channels varchar
(255)

Keywords that identify the communication channels between the gadget and VIVO.

The database tableorng_app_views

This table tells how, where, and when to display the gadgets that are described in . Each row in this table is a "view", describing a single gadget orng_apps
and the rules that determine whether the gadget will be displayed on a particular page.

Note: If a gadget is described and enabled in the table, but has no records in the table, the gadget will be displayed without orng_apps orng_app_views
restriction on all ORNG-enabled pages. This can be helpful when developing a new gadget. To avoid this, either

remove the gadget from , ororng_apps
set the flag in to , orenabled orng_apps 0
create a rule for the gadget in orng_app_views.

Field Type Usage

appid int(11) Determines which gadget in is affected by this rule.orng_apps

viewer
_req

char(1) What requirements must the viewer satisfy in order to see this view?

NULL -- There are no requirements on the viewer.
'U' -- The viewer must be logged in to VIVO.
'R' -- The viewer must be logged in, and must be registered as a user of this gadget.

owner_
req

char(1) What requirements must the owner of this page satisfy in order to see this view?

NULL -- There are no requirements on the owner of the page.
'R' -- The owner of the page must choose to display this gadget to the public.
'S' -- The viewer must be the owner of the page being viewed.

page varchar
(50)

What page does this rule apply to? A single gadget might have several views, but no more than one view per page. Recognized
values are

individual -- The profile page of an individual, when it is not in "edit" mode. This applies when the viewer is not logged in, or
does not have the right to edit the profile page.
individual-EDIT-MODE -- The profile page of an individual, when it is in "edit" mode. This applies when the viewer is logged in
as an administrator or other privileged user, or as the owner of the profile page.
search -- The search results page.
gadgetDetails -- A page that contains only the selected gadget. This usually occurs when the user clicks on an icon or a link
that expands the gadget to full-page mode.

view varchar
(50)

What is the view-mode of the gadget? These are defined as part of the OpenSocial standards.

profile -- The "standard" view, commonly used on the profile page of an individual
small -- The "condensed" view.
home -- The view which allows the user to change the gadget's settings.
canvas -- The "expanded", commonly used when the gadget is the only thing on a page.

closed
_width

int(11) How wide is the gadget when it is closed? (in pixels)

open_
width

int(11) How wide is the gadget when it is open? (in pixels)

start_cl
osed

tinyint
(1)

When the page is first loaded, is the gadget open or closed (1 = closed, 0 = open)

chrome
Id

varchar
(50)

The gadget will be displayed on the page inside a <div> with this id. Note: the page must contain this <div> and its contents will be
replaced with this gadget (or gadgets).

display
_order

int(11) If more than one gadget has the same chromeId, they will be displayed in order by this field.

Additional Considerations
Some things to be aware of when working with OpenSocial gadgets.

Re-running the deployment script

The OpenSocial framework relies on several of the settings in the and files, in addition to the ones that are explicitly build.properties runtime.properties
linked to it.

Each time you change the settings in or , you should re-deploy the framework withbuild.properties runtime.properties

 ant orng

Resetting the gadget cache

For efficiency, VIVO reads the gadget configuration only when it starts up. VIVO keeps a copy of the database tables in memory, for efficiency.

This means that if you change the gadget configuration in the database tables, you must either tell VIVO to read the tables again. Direct your browser to
the orng/clearcache page within VIVO. For example,

 http://localhost:8080/vivo/orng/clearcache

VIVO will re-read the gadget configuration, and display the VIVO home page.

You can achieve the same effect by restarting VIVO.

Issues with Linked Open Data

TBD

Disabling the OpenSocial gadgets

If you decide not to use OpenSocial gadgets in your VIVO installation, there are several ways to deactivate them, depending on how firm your decision is,
and how thorough you wish to be.

Disable the gadgets

You can disable any or all of the installed gadgets by setting the flag in to zero (see).enabled orng_apps section II.i. The database tableorng_apps

To make this change take effect, restart Tomcat, or clear the OpenSocial cache (see).section III.ii. Resetting the gadget cache

Disable the connection

Disabling the gadgets, as above, will remove essentially all of the OpenSocial processing within VIVO. To remove the remainder of it, you can disable the
connection between VIVO and the OpenSocial service. Do this by removing or commenting the properties in (see OpenSocial build.properties section I.iv.

).Configure VIVO

To make this change take effect, re-deploy VIVO and restart Tomcat.

Remove the OpenSocial webapp from Tomcat

Disabling the connection, as above, will remove all of the OpenSocial processing from your VIVO requests. However, you may still see that Tomcat takes
longer to start up, and requires more memory.

To remove the OpenSocial webapp from Tomcat,

stop Tomcat;
in the [tomcat]/webapps directory, delete shindigorng.war and the shindigorng sub-directory;

start Tomcat.

Clean up the remnants

To remove all traces of OpenSocial from your VIVO installation, you should take the steps outlined above, and also:

Remove the tables from your MySQL database.orng
Remove the changes to Tomcat by restoring your file to its previous state.setenv
Remove the directory and subdirectories from your VIVO home directory.shindig

These steps will have no appreciable effect on the operation of VIVO, Tomcat, or MySQL. However, if these artifacts are not removed they could be a
source of puzzlement for future VIVO maintainers.

	Adding OpenSocial gadgets to VIVO

