Akubra Intro and Update

Below are the notes | used for the Akubra update in today's architecture meeting.

What's Akubra About?

® A standard Java interface for reading/writing files, but at a different level of abstraction than a filesystem
® Transactional by design (but implementations may ignore transaction semantics)

® Exploring web-based exposure

® From the Akubra wiki: Requirements and Goals

Note: The Akubra wiki is hosted at http://topazproject.org/akubra

Anyone is welcome to sign up to the dev and general mailing lists.

Filesystem vs. BlobStore
Common filesystems:
® Have directories
® Can provide system metadata about files (e.g. size, modified date)
® Allow partial reads and writes of files
An Akubra BlobStore:
Has a collection of URI-addressable bitstreams (no "directories")
Only provides the size of each file -- is not concerned with other system metadata (yet?).

L]

L]

® May allow partial reads (InputStreams can skip()...)
® Does not allow partial writes

Java API

This is in flux. We are currently testing the design with a simple filesystem implementation.
Blob (A finite, readable bitstream)

BlobStore (For getting connections)
BlobStoreConnection (For CRUD operations)

Transactions

Level of support varies per-implementation (some can "fake it")
Why: To execute a mixed set of CRUD operations of several files as one atomic unit of work.
Observation: We can build a transactional blob store on top of a non-transactional one...with the help of a DB.

Example non-transactional BlobStore: FSBlobStore (see FSBlobStoreConnection)
Higher-level BlobStore TBD:

® Uses FSBIlobStore to persist data
® Uses database to support transactions (via id mapping)

Other possible storage Plug-Ins:

® S3 (anything based on current LLStore should be easy to port over)

® ZFS (already transactional, does not need layering)

® Centera (content-addressible...ids not available till content is written)

® Sam/QFS (hierarchical storage implies graceful handling of delays...not a use case we've factored in yet)

Web-based exposure?

® Opens up use of akubra-java impls to other (remotely-running) programs
® Allows an akubra impl that's a client to remote akubra instance
® |Lots of interesting possibilities!


http://www.topazproject.org/akubra/trac/wiki/RequirementsAndGoals
http://www.topazproject.org/akubra
http://www.topazproject.org/akubra/trac/browser/trunk/akubra-core/src/main/java/org/fedoracommons/akubra/Blob.java
http://www.topazproject.org/akubra/trac/browser/trunk/akubra-core/src/main/java/org/fedoracommons/akubra/BlobStore.java
http://www.topazproject.org/akubra/trac/browser/trunk/akubra-core/src/main/java/org/fedoracommons/akubra/BlobStoreConnection.java
http://www.topazproject.org/akubra/trac/browser/trunk/akubra-fs/src/main/java/org/fedoracommons/akubra/fs/FSBlobStoreConnection.java

	Akubra Intro and Update
	What's Akubra About?
	Filesystem vs. BlobStore
	Java API
	 Transactions
	Other possible storage Plug-Ins:
	Web-based exposure?


