
1.
a.

i.
b.
c.

i.
ii.

d.
i.
ii.

e.
i.
ii.

iii.
iv.

1.
2.

a.
i.
ii.
iii.

b.
i.

1.
2.

ii.
c.

i.
ii.
iii.
iv.

1.
v.

1.
2.
3.

a.
4.
5.

a.
vi.

1.
vii.

viii.
ix.

1.
2.

d.
i.

1.
ii.
iii.

1.
iv.

1.

a.

2016-02-04 Fedora API Meeting
Date: Thursday February 4, 9am PST

Attendees
Mark Bussey
Adam Wead
Longshou Situ
Vivian Chu
Tom Johnson
Rob Sanderson
Esme Cowles

Agenda
Goals of API (and SPI) work

Defining an API with a clear spec, versioned independent of the implementation, etc.
Including HTTP API, messaging

Having a spec opens up the possibility of multiple implementations with different priorities
We could use the existing (4.5.0) API as the baseline of the spec, and be thoughtful about changes going forward?

Don't expect dramatic API change, but do expect some changes
Maybe we should codify existing API, and also plan a new version that improves parts of the API, and have a predictable
process for moving from one to the other

Would like more predictability of API changes
There are release candidates available for 2-4 weeks, and testing against them would help identify breaking changes earlier
DCE supports multiple projects on multiple Fedora releases, and needs to manage changes

How much of the API is stable? How do people know about upcoming changes?
Some changes (e.g. removing JCR types) known about long in advance, could improve communication and predictability
The weekly Fedora committers call is a good way to know about changes, but too high an overhead for many people to
participate in
Roughly quarterly meetings (HydraConnect, LDCX, etc.) would be more convenient
In favor of frequent releases, but not breaking changes

Would like breaking changes to be less frequent and better communicated, to make it easier to test and adapt to them
Discussion of proposed services, in the context of Hydra

CRUD
Aligned with LDP, so already specified
Fedora's HTTP API docs also cover the particular implementation choices (e.g., Prefer headers supported)
Fedora complies with the LDP spec and wants to keep compliant

Fixity checking
On upload, you can provide a checksum and it will be verified

Hydra doesn't support this now, but it could
May want to have a slightly different approach: upload and checksum at the same time, and then compare checksums

On demand, you can check that the resource on disk matches the recorded checksum
Versioning

Existing versioning API Fedora-specific
The implementation is efficient and full-featured
Implementing it might complicate other implementations
The API spec should specify how an implementation that didn't support versioning would behave

Or the API spec could require versioning, since many storage backends support versioning
Would like to use the Memento API for version retrieval

But there is no Memento spec for how to create versions
Marmotta's Memento implementation isn't LDP-aligned, it just auto-versions triples
Fedora could auto-version metadata to avoid needing to create them explicitly

Non-versioning backends could just report the current version following the Memento spec
But Fedora would need to have explicit versioning for binaries because storage concerns
Fedora also has an API to restore versions

But that could be a COPY from the old version URI to the current URI
ActiveFedora has limited support for versioning (files only), so need to support metadata versioning, subtree versioning

Now would be a good time to change the API, since Hydra isn't really using it now
Would be good to include the broader LDP community into the versioning API discussion to encourage a LDP-wide versioning
approach
Wouldn't mind having auto-versioning, but would still like to be able to tag/label specific versions
Don't want lots of extra versions of files because I version the metadata that links to it

ActiveFedora can control this and decide when to create versions and/or label versions
ACTION: Esme: Check whether creating a version of a tree also creates distinct versions of unchanged files

Transactions
Would like to consider all the changes in a transaction as a version

Can do this now by opening a transaction, making changes, creating a version, and then committing the transaction
Somewhat awkward for RESTful API, so there is probably not an existing standard
The current API is a good strawperson

Haven't heard any complaints about the API, non-Hydra clients are using it
Current discussion about what aspects of ACID Fedora supports

Definitely Atomicity and Durability

2.

d.

iv.
1.

a.

b.
2.

a.

v.
e.

i.
ii.

1.
2.

a.

b.
iii.

iv.
1.

3.
a.

i.
ii.

b.
i.
ii.
iii.

Atomicity might require all items to happen at the same time – would be hard to support in a distributed
environment
Want to make it as easy as possible to support diverse backends and scalability requirements

Consistency and Isolation might be limited
Different implementations might have different levels (e.g. snapshot isolation vs. read-uncommitted), and
implementations should advertise what they support

ACID is a set of guarantees for all updates, not just transactions, so it's important to consider them more broadly
Authorization

Fedora provides authorization, but Hydra (for historical reasons) doesn't take advantage of it
Hydra does use WebACLs, but the implementation is different from what Fedora expects, so they are not compatible

We should align them so Fedora could enforce Hydra's WebACLs for other clients
Hydra also currently cannot provide the user who is making a request, which would be needed to enforce the
WebACLs

ActiveFedora would need to be refactored to allow per-request identification of the end user making the
request
ACTION: Adam and Esme will compare Fedora and Hydra WebACLs to see where they differ

Fedora authorization assumes either the client or the servlet container is handling authentication and group membership
information
If there is an IndirectContainer, I shouldn't be able to use it to add triples to resources I don't have permission to write to

ACTION: Rob will create a ticket to investigate this
Other API concerns

Would like to have some kind of packaged version of all of the resources that make up a Work
There is a Camel component that can sync updates to a triplestore, disk, etc. which might meet this need.
An RDF import/export functionality (like the current JCR/XML import/export functionality) would also meet this need, and could
be a useful bulk edit API to address other concerns about the performance of editing multiple related resources.

Muti-resource CRUD
PCDM and Hydra Works mean that many users who used to have a single Fedora 3 object now have many Fedora 4 resources.
It would be great to have LDP community agreement on how this should work
We can all join the mailing list and discuss our approach, and then implement it in FedoraLDP next

Reference

2015 - 2016 Technical Priorities

Notes
A project tracking the Fedora API in Ruby: https://github.com/fcrepo4-labs/derby

https://www.w3.org/community/ldpnext/
https://wiki.lyrasis.org/display/FF/2015+-+2016+Technical+Priorities
https://github.com/fcrepo4-labs/derby

	2016-02-04 Fedora API Meeting

