
Enhanced Configuration Scheme
Enhanced Configuration Scheme was accepted into the DSpace 6.0 release

The Enhanced Configuration Scheme will first be released in DSpace 6.0. This documentation is in the process of being merged/moved over into the offici
.al configuration documentation for DSpace 6

This page describes the enhanced/reloadable configuration feature, based on Apache Commons Configuration, which was added in DSpace 6.

Ticket:

PR: https://github.com/DSpace/DSpace/pull/1104

TESTERS NEEDED! While the basics of this functionality work (see PR above), this change literally changes how configuration is read by DSpace every
(as Apache Commons Configuration has its own enhanced , see below for more on that). Property file syntax

This means it's likely that some specific features (especially optional ones) may need to have their configuration file/settings tweaked. I've done my best to
already fix the configurations of out-of-the-box features, but have not yet tested all optional features.

Overview
Building / Installing DSpace
local.cfg
config-definition.xml
FAQs

Can I have different local.cfg files for different environments (e.g. development/testing/staging/production)?
Advanced Topics

Configuration Interpolation
Configuration variables determined at runtime
Configuration variables filtered during installation (prior to runtime)

Java API Changes
ConfigurationManager vs ConfigurationService
PluginManager vs PluginService

Overview

In DSpace 5 or below, DSpace used its own custom Property-based configuration scheme, along with a custom which could tweak build.properties
the build/compilation process in order to "override" some pre-selected configurations in the file. While this configuration scheme "worked" at dspace.cfg
a basic level, it required a lot of custom variable interpolation (i.e. filtering) to occur in both the Maven build process () and the Ant install mvn package
process (or). The end result was that configuration files in your DSpace installation directory () ant fresh_install ant update [dspace.dir]
contained the correct settings with all variables () replaced by the values . So, it was no longer possible to easily ${setting} from your build.properties file
tweak certain key settings (like or) without having to either re-run the entire build process or make corrections to several files dspace.dir solr.server
at once.

Enter .Apache Commons Configuration

Since DSpace 6, the Enhanced Configuration Scheme feature uses (version 1.10) as the new configuration scheme for Apache Commons Configuration
DSpace. This provides several key advantages over our old, custom configuration scheme:

Apache Commons Configuration is a well-established Java library whose goal is to make configuration more flexible and easier to manage.
It automatically interpolates all settings at . This means we no longer need to replace variables () within our configurations. runtime ${setting}
They will be auto-determined at runtime based on the value of that variable within one of the configuration files. For more on variable interpolation
see its .Basic Features documentation
It is a flexible configuration scheme. It can read configurations from several sources at once, including Properties files, XML config files and even
database tables (see its). Currently, in the DSpace Enhanced Configuration Scheme we are still only using Properties Overview documentation
files, similar to DSpace 5 and below. But, should we decide to do so, we are able to easily move all or some configurations to XML configs or now
database config tables.

The locations of the configuration sources can be easily customized by DSpace administrators in a new file, config-definition.xml
which configures Apache Commons Configuration for DSpace. More on that below.
The file itself is simply a "configuration definition" file as defined by Apache Commons Configuration. See config-definition.xml
the for more details.Configuration File Documentation

It allows for easy overriding of configuration values from other sources. How the overrides occur depends on how you've configured Apache
Commons Configuration. For DSpace, we have a new which defines the following override scheme (again, this can config-definition.xml
be easily tweaked for local needs):

If a setting is specified in Java System Properties (e.g.), it overrides the same setting found in any below -D[setting]=[value]
location
If a setting is specified as an Environment Variable, it overrides the same setting found in any below location
If a setting is specified in the new configuration file, it overrides the default value in any below locationlocal.cfg
Default values for all settings are specified in the and the configuration files.dspace.cfg modules/*.cfg

It supports Properties files. This means our , and other configuration files can now immediately support enhanced dspace.cfg local.cfg
some enhanced options, including:

The ability to easily other configuration files via: " " (See the end of the updated include include=[config-file-location] dspace
 for examples).cfg

The ability to provide lists of values to "array" configurations by specifying the setting multiple times (rather than creating a giant comma
separated configuration spanning multiple lines). For example, enabling LDAP and Password authentication can now be done via both
these two lines:

Unable to locate Jira server for this macro. It may be due to Application Link configuration.

https://wiki.lyrasis.org/display/DSDOC6x/Configuration+Reference
https://wiki.lyrasis.org/display/DSDOC6x/Configuration+Reference
https://github.com/DSpace/DSpace/pull/1104
http://commons.apache.org/proper/commons-configuration/userguide_v1.10/howto_properties.html
https://github.com/DSpace/DSpace/blob/dspace-5_x/build.properties
https://commons.apache.org/configuration/
https://commons.apache.org/configuration/
http://commons.apache.org/proper/commons-configuration/userguide_v1.10/howto_basicfeatures.html
https://commons.apache.org/proper/commons-configuration/userguide_v1.10/overview.html
http://commons.apache.org/proper/commons-configuration/userguide_v1.10/howto_configurationbuilder.html

 = org.dspace.authenticate.plugin.sequence.org.dspace.authenticate.AuthenticationMethod
LDAPAuthentication

 = org.dspace.authenticate.plugin.sequence.org.dspace.authenticate.AuthenticationMethod
PasswordAuthentication

For more information see the Commons Config .Properties File documentation
More information/features can also be found in the .Apache Commons Configuration v1.10 User Guide

Building / Installing DSpace

With the Enhanced Configuration Scheme, the DSpace build process is slightly changed. The file no longer exists and therefore has build.properties
no effect on the build process.

Here's the basics of building/installing DSpace:

Download DSpace (as usual)
cd [dspace-source]
Create your own initial local.cfg configuration file

cp local.cfg.EXAMPLE local.cfg
The following fields MUST be specified in your local.cfg in order to install DSpace:

dspace.dir
database connection information (, , , , ,)db.url db.driver db.dialect db.username db.password db.schema
All other fields are optional, and can be specified at a later time, or not at all. (As you'll read later on in these instructions, any
configuration can also be to your local.cfg).added

Build/Compile/Install as normal
mvn clean package
ant fresh_install (or)ant update

Once DSpace is installed, your local.cfg will be copied over to your location. At that time you can optionally tweak it]/config/[dspace.dir
further (see local.cfg documentation below)

Unlike the old , the new has NO effect on the Maven build process.build.properties local.cfg

It is ONLY used by Ant to determine the location where DSpace should be installed/updated (using), and also to initialize/update the dspace.dir
database (using settings).db.*
Many configuration names/keys have changed!

If you are upgrading from an earlier version of DSpace, you will need to be aware that configuration names/keys have changed. Because Apache many
Commons Configuration allows for auto-overriding of configurations, all configuration names/keys in different files MUST be uniquely named *.cfg
(otherwise accidental, unintended overriding may occur).

In order to compensate for this, all files had their configurations to be prepended with the module name. As a basic example, modules/*.cfg renamed
all the configuration settings within the configuration now start with ".modules/oai.cfg "oai.

Additionally, while the may look to the old , many of its configurations have slightly different names. So, simply local.cfg similar build.properties
copying your build.properties into a local.cfg will NOT work.

This means that DSpace 5.x (or below) configurations are NOT compatible with the Enhanced Configuration Scheme. While you obviously can use your
old configurations as a reference, you will need to start with fresh copy of all configuration files, and reapply any necessary configuration changes (this has
always been the recommended procedure). However, as you'll see in the next section, you'll likely want to do that anyways in order to take full advantage
of the new file.local.cfg

local.cfg

The file is the new way to customize your DSpace configuration based on your local needs.[dspace.dir]/config/local.cfg

There are a few key things to note about this configuration file:

Any setting in your will automatically OVERRIDE a setting of the same name in the or any file. This local.cfg dspace.cfg modules/*.cfg
also means that you can copy ANY configuration (from or any file) into your l to specify a new value.dspace.cfg modules/*.cfg ocal.cfg

For example, specifying in will override the default value of in .dspace.url local.cfg dspace.url dspace.cfg
Also, specifying in will override the default value of in oai.solr.url local.cfg oai.solr.url config/modules/oai.cfg

The file is an Apache Commons Configuration Property file. For more information see the Commons Config local.cfg Properties File
documentation

This means it has enhanced features like the ability to include other config files (via " " statements).include=
As needed, you also are able to OVERRIDE settings in your by specifying them as System Properties or Environment Variables.local.cfg

For example, if you wanted to change your in development/staging environment, you could specify it as a System Property dspace.dir
(e.g.). This new value will override any value in and .-Ddspace.dir=[new-location] both local.cfg dspace.cfg

An example local.cfg is provided at /local.cfg.EXAMPLE. The example only provides a few key configurations which all DSpace sites [dspace-source]
are likely to need to customize. However, you may add (or remove) any other configuration to your to customize it as you see fit.local.cfg

Link to local.cfg.EXAMPLE: https://github.com/DSpace/DSpace/blob/master/local.cfg.EXAMPLE

config-definition.xml
Link to config-definition.xml: https://github.com/DSpace/DSpace/blob/master/dspace/config/config-definition.xml

http://commons.apache.org/proper/commons-configuration/userguide_v1.10/howto_properties.html
http://commons.apache.org/proper/commons-configuration/userguide_v1.10/user_guide.html
http://commons.apache.org/proper/commons-configuration/userguide_v1.10/howto_properties.html
http://commons.apache.org/proper/commons-configuration/userguide_v1.10/howto_properties.html
https://github.com/DSpace/DSpace/blob/master/local.cfg.EXAMPLE
https://github.com/DSpace/DSpace/blob/master/dspace/config/config-definition.xml

1.

2.

The file defines the Apache Commons Configuration settings that DSpace utilizes by default. It is a [dspace.dir]/config/config-definition.xml
valid "configuration definition" file as defined by Apache Commons Configuration. See the for more details.Configuration File Documentation

You are welcome to customize the to customize your local configuration scheme as you see fit. Any customizations to this config-definition.xml
file will require restarting your servlet container (e.g. Tomcat).

By default, the DSpace file defines the following configuration:config-definition.xml

All DSpace configurations are loaded via Properties files
Note: Apache Commons Configuration does support other configuration sources such as XML configurations or database configurations
(see its).Overview documentation

Configuration Files/Sources: By default, only two configuration files are loaded into Apache Commons Configuration:
local.cfg (see documentation on local.cfg above.)
dspace.cfg (NOTE: however that all are loaded by via " " statements at the end of that modules/*.cfg dspace.cfg include=
configuration file.)

Configuration Override Scheme: The configuration override scheme is defined as follows. Configurations specified in earlier locations will
automatically override any later values:

System Properties (-D[setting]=[value]) override all other options
Environment Variables
local.cfg
dspace.cfg (and all files) contain the default values for all settings.modules/*.cfg

Configuration Auto-Reload: By default, all configuration files are automatically checked each minute for changes. If they have changed, they are
automatically reloaded.

Configuration Reloading and Caching

As noted above, by default, DSpace will now automatically reload any modified configuration file (, or) within local.cfg dspace.cfg modules/*.cfg
one minute.

While the new values are immediately available within the DSpace ConfigurationService, some configurations may still be "cached" within UI-specific code.
This often occurs when a UI (or API) loads a configuration value into a variable, or otherwise implements/provides its own object caching static
mechanism.

The Enhanced Configuration Scheme codebase does NOT attempt to correct all these instances of caching within UIs or APIs. This would require
individual configurations to be tested and any caching mechanisms to be removed.

FAQs

Can I have different local.cfg files for different environments (e.g. development/testing/staging
/production)?

Yes, but you'll need to tweak the default configuration scheme. By default, DSpace does NOT allow you to have multiple files (one per local.cfg
environment). However, with some minimal tweaks to your configuration scheme, you (untested) could achieve this in one of two ways: likely

Change your to use a system property (of your choice) instead of the hardcoded name "local.cfg". The config-definition.xml
Configuration Definition file itself does allow for variables to be included, but they must be specified in a previous configuration source (in that
config-definition.xml) or via a system property. See the for more details. So, you could simply change your Configuration File Documentation
config-definition.xml to use a " " system property, and pass " " to have it use a dspace.env -Ddspace.env=dev [dspace.dir]/config/dev.
cfg:

<!-- Change local.cfg to be ${dspace.env} in your config-definition.xml -->
<properties fileName="${dspace.env}.cfg" throwExceptionOnMissing="false" config-name="local" config-
optional="true">
...
</properties>

<!-- OPTIONALLY: If you wanted to have some default local configs shared among *all* environments, you
could add
 a NEW "properties" file to always load those defaults. In this example, default.cfg would be loaded
for ALL
 environments. Configs in the environment-specific ${dspace.env}.cfg would override default.cfg, and
 both would override dspace.cfg (and other *.cfg). -->
<properties fileName="default.cfg" throwExceptionOnMissing="false" config-name="default" config-
optional="true">
...
</properties>

Alternatively, you could use the " " option (of Apache Commons Configuration) within your file to load a include= Properties Files local.cfg diff
 configuration file, again based on a setting specified as a system property. For example, your file would ONLY consist of "erent local.cfg incl
" statement(s), which would load whichever configuration file was specified as the "dspace.env" system property:ude=

http://commons.apache.org/proper/commons-configuration/userguide_v1.10/howto_configurationbuilder.html
https://commons.apache.org/proper/commons-configuration/userguide_v1.10/overview.html
http://commons.apache.org/proper/commons-configuration/userguide_v1.10/howto_configurationbuilder.html
http://commons.apache.org/proper/commons-configuration/userguide_v1.10/howto_properties.html

2.

This is the ENTIRE local.cfg -- all settings would instead be located in environment-specific config
files.
Its job is just to load up the configuration for the environment specified by "dspace.env"
For example, -Ddspace.env=dev would load [dspace.dir]/config/dev.cfg
and -Ddspace.env=prod would load [dspace.dir]/config/prod.cfg

Load the environment-specific file
include = ${dspace.env}.cfg

OPTIONALLY: If you wanted to have some default local configs shared among *all* environments, you
could add
a second "include=" statement to always load those defaults from a file of your choice. In this
example,
a default.cfg would be loaded for ALL environments. Configs in the environment-specific ${dspace.env}.
cfg
would override default.cfg, and both would override dspace.cfg (and other *.cfg).
include = default.cfg

While the above examples both use a property named , you can use whatever property you want. The name itself doesn't ${dspace.env}
matter. Additionally, both show examples of using a " " to specify properties which are shared between several environments. This file can default.cfg
also be named whatever you want. Just tweak the name(s) in the examples above to meet your local needs.

The option you choose above would likely depend on your own local practices/needs. Either of these options should work, provided that you place your
environment-specific configuration files within the directory alongside the file.[dspace.dir]/config local.cfg

Advanced Topics

Configuration Interpolation

This is less important to normal users of DSpace, but may be of high interest to developers and some system administrators.

Configuration variables determined at runtime

It's important to be aware of the fact that variables within the following types of configurations are now AUTOMATICALLY interpolated at using runtime
Apache Commons Configuration (and our ConfigurationService). This means that variables () are no longer filtered by Maven or Ant for any ${setting}
of the following configuration types. In other words, variables are perfectly OK in these configuration files in your DSpace installation directory (i.e. [dspace]
).

Primary Configuration files (namely , and all)local.cfg dspace.cfg modules/*.cfg
Primary Log4j settings ()log4j.properties
Spring XML configs (namely)[dspace.dir]/config/spring/api/*.xml

Configuration variables filtered during installation (prior to runtime)

There are a few configuration file(s) which still require their variables/settings to be filtered/interpolated during installation. The following configuration files
are still filtered during the Installation/Update process (or), and . In other words, ant fresh_install ant update cannot be determined at runtime
variables exist in these configuration files in your DSpace installation directory (i.e.).cannot [dspace]

web.xml files still require filtering, both to support IDE integration, and to properly initialize all webapps in your Servlet Container (e.g. Tomcat).
To support IDE integration (and allow debugging of webapps from IDEs), all files are filtered by Maven using the web.xml filteringD

 setting in POMs. Without this setting, the web.xml files will never be filtered when attempting to run any eploymentDescriptors
DSpace webapp from within an IDE.
Additionally, to support running the webapps in general, the variable is also filtered (by Ant). This is because the ${dspace.dir} dspac

 context parameter in these files is used to initialize the DSpace Kernel (and tell the webapp where the DSpace home e.dir web.xml
directory is). Unfortunately, there's no way to interpolate this value at runtime as the value does not exist until the Kernel dspace.dir
and the ConfigurationService have initialized.

In other words, the DSpace webapps cannot function/initialize without a . We either need to filter a value for it dspace.dir
(during ant update/fresh_install), or we need to REQUIRE that it be specified by other means.
The only way we'd get around this problem would be to REQUIRE a ALWAYS be specified to the servlet dspace.dir
container (as a Context parameter and/or system property).

robots.txt : Obviously there's no way for a static file like robots.txt to load configurations at runtime. This file is filtered by Ant during a
"fresh_install" or "update".
log4j-*.properties : While the primary configuration is NOT filtered, DSpace also includes several other log4j files log4j.properties
which are utilized by third-party dependencies (e.g. Solr uses its own log4j-solr.properties). As these third-party dependencies have their own
initialization process, they cannot utilize DSpace's ConfigurationService, and their log4j configurations must be filtered by Ant during a
"fresh_install" or "update".
RDF configurations: The DSpace RDF / Linked Data interface has TTL configuration files which require minor filtering. These files are filtered by
Ant during a "fresh_install" or "update".
OAI-PMH : This static, custom OAI-PMH configuration file requires minor filtering. This file is filtered by Ant during a description.xml
"fresh_install" or "update".

Java API Changes

ConfigurationManager vs ConfigurationService

In the DSpace 5 Java API, we had two types of Configuration objects: and org.dspace.coreConfigurationManager org.dspace.services.
.ConfigurationService

While the the still exists in the API (and is still called by some areas of the codebase), it is now a "wrapper" object. It simply ConfigurationManager
wraps calls to the configured .ConfigurationService

As before, the default ConfigurationService is the (in dspace-services).org.dspace.servicemanager.config.DSpaceConfigurationService

The has been updated/enhanced to utilize Apache Commons Configuration, and to better align its methods with the DSpaceConfigurationService
old class. It also has added a new method which can be called on demand to automatically reload all ConfigurationManager reloadConfig()
configurations.

PluginManager vs PluginService

In DSpace 5, the class managed all DSpace "plugin" definitions (i.e. settings in). org.dspace.core.PluginManager plugin.* dspace.cfg
(SIDENOTE: these DSpace "plugin" definitions are simply Java interfaces, which are then mapped to classes which implement that plugin interface).

While this concept still exists (and all plugin configurations are still respected/valid), the itself has been entirely replaced by a new PluginManager org.
 This change was necessary in order to "Spring-ify" the and make it compatible with the dspace.core.service.PluginService. PluginManager Co

. In prior releases (5.x and below), the was highly dependent on the , and as such, nfigurationService PluginManager ConfigurationManager
did not respect/follow the Spring bean initialization process. In other words, without this major refactor, the PluginManager would attempt to request
configurations from the ConfigurationService the ConfigurationService was fully initialized by Spring.before

The default PluginService is a new class, which implements the functionality of the old org.dspace.core.LegacyPluginServiceImpl PluginManag
.er

	Enhanced Configuration Scheme

