
APPENDIX G - All About Tuque
Please check the original GitHub reference for updates on these notes.:Working With Fedora Objects Programmatically Via Tuque

https://github.com/Islandora/islandora/wiki/Working-With-Fedora-Objects-Programmatically-Via-Tuque

Islandora introduces support for a Fedora repository to be connected to and manipulated using the Tuque PHP library. This library can be accessed using
functions included with Islandora, available inside a properly-bootstrapped Drupal environment. It can also be accessed directly outside of an Islandora
environment.

Tuque is an API, written and accessible via PHP, that connects with a Fedora repository and mirrors its functionality. Tuque can be used to work with
objects inside a Fedora repository, accessing their properties, manipulating them, and working with datastreams.

This guide will highlight methods of working with Fedora and Fedora objects using Tuque both by itself and from a Drupal environment.

Tuque download

milestone 4 - Installing The "Tuque" library

Variables repeated often in this guide
From here on out, we're going to be repeating the use of a few specific PHP variables after the guide demonstrates how they are instantiated or
constructed:

Variable PHP Class Description

$repository FedoraRepository A PHP object representation of the Fedora repository itself.

$object FedoraObject A generic Fedora object.

$datastream FedoraDatastream A generic Fedora object datastream.

Accessing the Fedora Repository

Connecting to Fedora

Tuque or Islandora

$connection = new RepositoryConnection($fedora_url, $username, $password)

Islandora Only (via module)

$connection = islandora_get_tuque_connection($user)

Accessing the repository

Tuque or Islandora

 /**
 * Assuming our $connection has been instantiated as a new RepositoryConnection object.
 */
$api = new FedoraApi($connection);
$repository = new FedoraRepository($api, new simpleCache(););

https://github.com/Islandora/islandora/wiki/Working-With-Fedora-Objects-Programmatically-Via-Tuque
https://github.com/Islandora/islandora/wiki/Working-With-Fedora-Objects-Programmatically-Via-Tuque
https://github.com/Islandora/islandora_scholar/archive/7.x-1.6.zip
https://wiki.duraspace.org/pages/viewpage.action?pageId=69833570

Islandora only, manually, using the Islandora Tuque wrapper:

 /**
 * Assuming our $connection has been instantiated as a new RepositoryConnection object.
 */
module_load_include('inc', 'islandora', 'includes/tuque');
module_load_include('inc', 'islandora', 'includes/tuque_wrapper');
$api = new IslandoraFedoraApi($connection);
$repository = new IslandoraFedoraRepository($api, new SimpleCache());

Islandora only, automatically, using the Islandora module:

 /**
 * Assuming $connection has been created via islandora_get_tuque_connection().
 */
$repository = $connection->repository;

Islandora only, using the IslandoraFedoraObject wrapper:

 /**
 * This method tends to be the most reliable when working with a single object,
 * since it builds on the success of the attempt to load that object.
 */
$pid = 'object:pid';
$object = islandora_object_load($pid);
if ($object) {
 $repository = $object->repository;
}

From here, all Fedora repository functionality supported by Tuque is available to you through . This functionality is described in the rest of $repository
this document.

As of Islandora 7.x, there is a wrapper object, , that handles some errors and fires some hooks in includes/tuque.inc. More IslandoraFedoraObject
error handling is available if one uses the wrapper functions in islandora.module.

Working with existing objects

Loading an object

Method Code On Success On Fail

Tuque or Islandora, from aFedoraRep
ository

$object = $this->repository-
>getObject($pid);

Returns a loaded from the FedoraObject
given .$pid

Throws a 'Not Found'Reposito
.ryException

Islandora only, from anIslandoraFed
oraRepository

$object = $this->repository-
>getObject($pid);

Returns an loaded IslandoraFedoraObject
from the given .$pid

Throws a 'Not Found'Reposito
.ryException

Islandora only, using the module itself $object = islandora_object_load
($pid);

Returns an loaded IslandoraFedoraObject
from the given .$pid

Returns FALSE

Because the third method returns FALSE on failure, you can check if the object loaded correctly using , e.g.:!$object

$object = islandora_object_load($pid);
if (!$object) {
 /**
 * Logic for object load failure would go here.
 */
 return;
}
/**
 * Logic for object load success would continue through the rest of the method here.
 */

In the case of the other two methods, to load the object and the load failure exception, e.g.:try catch

try {
 $object = $this->repository->getObject($pid);
}
catch (Exception $e) {
 /**
 * Logic for object load failure would go here.
 */
}
/**
 * Logic for object load success would continue through the rest of the method here.
 */

Objects loaded via Tuque (either through Islandora or directly) have the following properties and can be manipulated using the following methods:

Properties

Name Type Description

createdDa
te

FedoraDate The object's date of creation.

forceUpda
te

bool Whether or not Tuque should respect Fedora object locking on this object (to uphold locking). Defaults to .FALSE FALSE

id string The PID of the object. When constructing a new object, this can also be set to a namespace instead, to simply use the
next available ID for that namespace.

label string The object's label.

lastModif
iedDate

FedoraDate When the object was last modified.

logMessage string The log message associated with the creation of the object in Fedora.

models array An array of content model PIDs (e.g. 'islandora:collectionCModel') applied to the object.

owner string The object's owner.

relations
hips

FedoraRel
sExt

A object allowing for working with the object's relationship metadata. This is described in another FedoraRelsExt
section below.

repository FedoraRep
ository

The object this particular object was loaded from. This functions precisely the same as the FedoraRepository $repo
created in the "Accessing the repository" section above.sitory

state string The object's state (A/I/D).

Methods

Name Description Parameters Return Value

constructD
atastream
($id,
$control_g
roup)

Constructs an empty datastream. Note that this does not ingest
a datastream into the object, but merely instantiates one as anA

object. Ingesting is done viabstractDatastream ingestDat
, described below.astream()

$id - the PID of the object; - the $control_group
Fedora control group the datastream will belong to,
whether Inline (X)ML, (M)anaged Content, (R)edirect, or
(E)xternal Referenced. Defaults to 'M'.

An emptyAbstractDatas
object from the tream

given information.

count() The number of datastreams this object contains. None The number of
datastreams, as an .int

delete() Sets the object's state to 'D' (deleted). None None

getDatastr
eam($dsid)

Gets a datastream from the object based on its DSID. $object
works effectively the same as->getDatastream($dsid) $ob

.ject[$dsid]

$dsid - the datastream identifier for the datastream to
be loaded.

AnAbstractDatastream
objeect representing the
datastream that was
gotten, or on failure.FALSE

getParents
()

Gets the IDs of the object's parents using itsisMemberOfColl
and relationships.ection isMemberOf

None An array of PIDs of parent
objects.

ingestData
stream
(&$abstrac
t_datastre
am)

Takes a constructed datastream, with the properties you've
given it, and ingests it into the object. This should be the last
thing you do when creating a new datastream.

Technically takes as a $abstract_datastream
parameter, but this should be passed to it by reference
after constructing a datastream withconstructDatast

.ream()

A objFedoraDatastream
ect representing the object
that was just ingested.

purgeDatas
tream
($dsid)

Purges the datastream identified by the given DSID. $dsid - The datastream identifier of the object. TRUE on success, onFALSE
failure.

refresh() Clears the object cache so that fresh information can be
requested from Fedora.

None None

Purging an object

A loaded object can be purged from the repository using:

$repository->purgeObject($object);

Working with datastreams
Datastreams can be accessed from a loaded object like so:

Tuque or Islandora

$datastream = $object['DSID'];

Islandora Only

$datastream = islandora_datastream_load($dsid, $object);

where is the datastream identifier as a , and is either an object PID or a loaded Fedora object.$dsid string $object

This loads the datastream as a object. From there, it can be manipulated using the following properties and methods:where isFedoraDatastream $dsid

the datastream identifier as a , and is a loaded Fedora object.string $object

Properties

Name Type Description

checksum string The datastream's base64-encoded checksum.

checksu
mType

string The type of checksum for this datastream, either DISABLED, MD5, SHA-1, SHA-256, SHA-384, SHA-512. Defaults to
DISABLED.

content string The binary content of the datastream, as a string. Can be used to set the content directly if it is an (I)nternal or (M)
anaged datastream.

control
Group

string The control group for this datastream , whether Inline (X)ML, (M)anaged Content, (R)edirect, or (E)xternal Referenced..

created
Date

FedoraDate The date the datastream was created.

forceUp
date

bool Whether or not Tuque should respect Fedora object locking on this datastream (to uphold locking). Defaults toFALSE FA
.LSE

format string The format URI of the datastream, if it has one. This is rarely used, but does apply to RELS-EXT.

id string The datastream identifier.

label string The datastream label.

location string A combination of the object ID, the DSID, and the DSID version ID.

logMess
age

string The log message associated with actions in the Fedora audit datastream.

mimetype string The datastream's mimetype.

parent AbstractFedo
raObject

The object that the datastream was loaded from.

relatio
nships

FedoraRelsInt The relationships that datastream holds internally within the object.

reposit
ory

FedoraReposi
tory

The object this particular datastream was loaded from. This functions precisely the same as theFedoraRepository $r
 created in the "Accessing the repository" section above.epository

size int The size of the datastream, in bytes. This is only available to ingested datastreams, not ones that have been
constructed as objects but are yet to be ingested.

state string The state of the datastream (A/I/D).

url string The URL of the datastream, if it is a (R)edirected or (E)xternally-referrenced datastream.

version
able

bool Whether or not the datastream is versionable.

Methods

Name Description Parameters Return Value

count() The number of revisions in the datastream's history. None An representing the number of int
revisions in the datastream history.

getContent
($path)

Writes the the binary content of the datastream to the given file. $path - the path to a file that the
contents will be written to.

A asserting the success or boolean
failure of writing the contents.

refresh() Clears the object cache so that fresh information can be requested
from Fedora.

None None

setContentFromFi
le($path)

Sets the content of a datastream from the contents of a local file. $path - the path to the file to be
used.

None

setContentFromSt
ring($string)

Sets the content of a datastream from a .string $string - the string to set the
content from.

None

setContentFromUr
l($url)

Attempts to set the content of a datastream from content
downloaded using a standatd HTTP request (NOT HTTPS).

$url - the URL to grab the data
from.

None

Iterating over all of an object's datastreams

Since they exist on an object as an array, datastreams can be iterated over using standard array iteration methods, e.g.:

foreach ($object as $datastream) {
 strtoupper($datastream->id);
 $datastream->label = "new label";
 $datastream_content = $datastream->content();
}

Example of creating or updating a datastream

$dsid = 'DSID';
// Before we do anything, check if the datastream exists. If it does, load it; otherwise construct it.
// The easiest way to do this, as opposed to a string of cases or if/then/elses, is the ternary operator, e.g.
// $variable = isThisThingTrueOrFalse($thing) ? setToThisIfTrue() : setToThisIfFalse();
$datastream = isset($object[$dsid]) ? $object[$dsid] : $object->constructDatastream($dsid);
$datastream->label = 'Datastream Label';
$datastream->mimeType = 'datastream/mimetype';
$datastream->setContentFromFile('path/to/file');
// There's no harm in doing this if the datastream is already ingested or if the object is only constructed.
$object->ingestDatastream($datastream);
// If the object IS only constructed, ingesting it here also ingests the datastream.
$repository->ingestObject($object);

Creating new objects and datastreams
When using Tuque, Fedora objects and datastreams must first be constructed as PHP objects before being ingested into Fedora. Un-ingested, PHP-
constructed Fedora objects and datastreams function nearly identically to their ingested counterparts, as far as Tuque is concerned, with only a few
exceptions noted in the properties and methods tables below.

Constructing and ingesting an object

Constructing and ingesting an object

 $object = $repository->constructObject($pid); // $pid may also be a namespace.
/**
 * Here, you can manipulate the constructed object using the properties and methods described above.
 */
$repository->ingestObject($object);

Constructing and ingesting a datastream

 $datastream = $object->constructDatastream($dsid) // You may also set the $control_group.
/**
 * Here, you can manipulate the constructed datastream using the properties and methods described above.
 */
$object->ingestDatastream($dsid, $object);

Accessing an object's relationships
Once an object is loaded, its relationships can be accessed via the object's property:relationships

$relationships = $object->relationships;

From there, the object's relationships can be viewed and manipulated using the following properties and methods:

Properties

Name Type Description

autoCo
mmit

bool Whether or not changes to the RELS should be automatically committed. : Probably don't touch this if WARNING
you're not absolutely sure what you're doing.

datast
ream

AbstractFedoraDat
astream

The datastream that this relationship is manipulating, if any.

Methods

Name Description Parameters Return
Value

add
($predicat
e_uri,
$predicate
,
$object,
$type)

Adds a relationship to the
object.

$predicate_uri - the namespace of the relationship predicate (if this is to be added via XML, use the
function described below first); - the predicate tag to be added; registerNamespace() $predicate $

 - the object to add the relationship to (not required if this is called usingobject $object-
); - the type of the attribute to add (defaults to).>relationships->add() $type RELS_TYPE_URI

None

changeObje
ctID($id)

Changes the ID referenced in
the attribute.rdf:about

$id - the new ID to use. None

commitRela
tionships
($set_auto
_commit)

Forces the committal of any
relationships cached while the

property was autoCommit
set to (or for whatever FALSE
other reason).

$set_auto_commit - determines the state of after this method is run (defaults to).autoCommit TRUE None

get
($predicat
e_uri,
$predicate
,
$object,
$type)

Queries an object's
relationships based on the
parameters given. See below
for an example of filtering
relationships using
parameters.

$predicate_uri - the URI to use as the namespace predicate, or for any predicate (defaults to NULL N
); - the predicate tag to filter by, or 'NULL' for any tag (defaults to); - ULL $predicate NULL $object

the object to filter the relationship by (not required if this is called using$object->relationships-
); - what type attribute the retrieved should be (defaults to>get() $type RELS_TYPE_XXX RELS_TYPE_

).URI

The
relationships
as an . array
See the note
below for an
example.

registerNa
mespace
($alias,
$uri)

Registers a namespace to be
used by predicate URIs.

$alias - the namespace alias; - the URI to associate with that alias.$uri None

remove
($predicat
e_uri,
$predicate
,
$object,
$type)

Removes a relationship from
the object.

$predicate_uri - the namespace of the relationship predicate to be removed, or to ignore NULL
(defaults to); - the predicate tag to filter removed results by. or to remove all NULL $predicate NULL
(defaults to); - the object to add the relationship to (not required if this is called usingNULL $object $ob

); - what type attribute the removed ject->relationships->remove() $type RELS_TYPE_XXX
should be (defaults to).RELS_TYPE_URI

None

Example of retrieving a filtered relationship

$object_content_models = $object->relationships->get('info:fedora/fedora-system:def/model#', 'hasModel');

This would return an array containing only the object's relationships.hasModel

Example of setting an isMemberOfCollection relationship

Islandora provides the constant to make it easy to set the predicate as the first variable here:FEDORA_RELS_EXT_URI

Example of a retrieved relationship array

Array
(
 [0] => Array
 (
 [predicate] => Array
 (
 [value] => isMemberOfCollection
 [alias] => fedora
 [namespace] => info:fedora/fedora-system:def/relations-external#
)
 [object] => Array
 (
 [literal] => FALSE
 [value] => islandora:sp_basic_image_collection
)
)

 [1] => Array
 (
 [predicate] => Array
 (
 [value] => hasModel
 [alias] => fedora-model
 [namespace] => info:fedora/fedora-system:def/model#
)
 [object] => Array
 (
 [literal] => FALSE
 [value] => islandora:sp_basic_image
)
)
)

Using the Fedora A and M APIs
Tuque can work with the Fedora repository's "Access" and "Manage" API services in much the same way one would using standard Fedora API requests.
This functionality is mimicked using an instantiated 's property.$repository api

Note that the methods above provide a much more PHP-friendly way of performing many of the tasks provided by API-A and API-M. They are nonetheless
listed in full below for documentation purposes. When a method in this section and a method above share functionality, it is recommended to use always
the method above, as not only is it nearly guaranteed to be easier to work with, but also we cannot predict the nature of the Fedora APIs in the future; if
any Fedora functionality changes or is removed, your code may also lose functionality. For example:

/**
 * Adding a relationship to an object. The API method is clunky and requires information you wouldn't
 * need if you did things the tuque way, which is more Drupal-friendly as well.
 */
// API method.
$repository->api->m->addRelationship();
// Tuque method.
$object->relationships->add();

/**
 * Iterating through datastreams. The API method only gives you an associative array of DSIDs
 * containing the label and mimetype - you would have to load each datastream if you wanted to
 * work with it. Working through tuque is faster.
 */
// API method.
$array = $repository->api->a->listDatastreams($object->id);
foreach ($array as $dsid => $properties) {
 $datastream = islandora_datastream_load($dsid, $object);
 // Now you can do stuff with the datastream.
}
// Tuque method.
foreach ($object as $datastream) {
 // Do stuff with the datastream.
}

Documentation for the most current versions of each API can be found at:

https://wiki.duraspace.org/display/FEDORA37/API-A
https://wiki.duraspace.org/display/FEDORA37/API-M
https://wiki.duraspace.org/display/FEDORA38/API-A
https://wiki.duraspace.org/display/FEDORA38/API-M

Each API exists as a PHP object through Tuque, and can be created using:

$api_a = $repository->api->a; // For an Access API.
$api_m = $repository->api->m; // For a Management API.

From here, the functionality provided by each API mimics the functionality provided by the actual Fedora APIs, where the standard Fedora endpoints can
be called as API object methods, e.g.:

$datastreams = $api_a->listDatastreams('islandora:1');

The following methods are available for each type of API:

FedoraApiA

All of these return results described in an array.

Method Description

describeRepository() Returns repository information.

findObjects($type, $query, $max_results, $display_fields) Finds objects based on the input parameters.

getDatastreamDissemination($pid, $dsid, $as_of_date_time,
$file)

Gets the content of a datastream.

getDissemination($pid, $sdef_pid, $method,
$method_parameters)

Gets a dissemination based on the provided method.

https://wiki.duraspace.org/display/FEDORA37/API-A
https://wiki.duraspace.org/display/FEDORA37/API-M
https://wiki.duraspace.org/display/FEDORA38/API-A
https://wiki.duraspace.org/display/FEDORA38/API-M

getObjectHistory($pid) Gets the history of the specified object.

getObjectProfile($pid, $as_of_date_time) Gets the Fedora profile of an object.

listDatastreams($pid, $as_of_date_time) Lists an object's datastreams.

listMethods($pid, $sdef_pid, $as_of_date_time) Lists the methods that an object can use for dissemination.

resumeFindObjects($session_token) Resumes a call that returned a resumption token.findObjects()

userAttributes() Authenticates and provides information about a user's Fedora
attributes.

FedoraApiM

All of these return results described in an array.

Method Description

addDatastream($pid, $dsid, $type, $file, $params) Adds a datastream to the object specified.

addRelationship($pid, $relationship, $is_literal,
$datatype)

Adds a relationship to the object specified.

export($pid, $params) Exports information about an object.

getDatastream($pid, $dsid, $params) Returns information about the specified datastream.

getDatastreamHistory($pid, $dsid) Returns the datastream's history information.

getNextPid($namespace, $numpids) Gets a new, unused PID, incrementing Fedora's PID counter for that
namespace.

getObjectXml($pid) Returns the object's FOXML.

getRelationships($pid, $relationship) Returns the object's relationships.

ingest($params) Ingests an object.

modifyDatastream($pid, $dsid, $params) Makes specified modifications to an object's datastream.

modifyObject($pid, $params) Makes specified modifications to an object.

purgeDatastream($pid, $dsid, $params) Purges the specified datastream.

purgeObject($pid, $log_message) Purges the specified object.

upload($file) Uploads a file to the server.

validate($pid, $as_of_date_time) Validates an object.

Using the Resource Index
The resource index can be queried from the repository using:

$ri = $repository->ri;

From there, queries can be made to the resource index. It is generally best to use SPARQL queries for forwards compatibility:

$itql_query_results = $ri->itqlQuery($query, $limit); // For an iTQL query.
$sparql_query_results = $ri->sparqlQuery($query, $limit); // For a SPARQL query.

Methods

Method Description Parameters Return Value

itqlQuery
($query, $limit)

Executes an iTQL query to
the resource index.

$query - a containing the query parameters; - an representing the string $limit int
number of hits to return (defaults to -1 for unlimited).

An array containing
query results.

sparqlQuery
($query, $limit)

Executes a SparQL query to
the resource index.

$query - a containing the query parameters; - an representing the string $limit int
number of hits to return (defaults to -1 for unlimited).

An array containing
query results.

	APPENDIX G - All About Tuque

