Creating short views of individuals

® Overview
© What does it do?
© How is it created?
® Details
© The class association
© The customViewForIndividual definition
© The SparglQueryDataGetter definition
© The Freemarker template
© The default template can be modified in the theme
® Some examples
© The scenario
© SEARCH example
® The default template
= Specifying the custom short view
© INDEX example
" The default template
= Specifying the custom short view
© BROWSE example
® The default template
= Specifying the custom short view
® Troubleshooting
O Errors in the template?
O Errors in the Query?
© Errors in the config file?
® Notes
Waiting for the Application and Display Ontology
Classes are not inferred
More than one applicable short view
Hard-coded BROWSE view for People

O O O O

Overview

What does it do?

Custom short views are used in three different contexts within VIVO, to give you more control over how an individual is displayed in that context.

You can configure VIVO to display different classes of individuals in different ways. As an example, you might choose to display a Faculty Member in a
grey color if she has no current appointments.

Custom short views will frequently be different in the three different contexts in which they are available. For example, you might want to show the image of
a Person on a search result, but you might not want to display that image in the Person index pages.

How is it created?

A short view is defined by two elements. First there will be a group of RDF statements in this file:

vi t r o/ webapp/ web/ VEB- | NF/ r esour ces/ shortvi ew_confi g. n3

In a VIVO release, this file is empty (except for a few comments), and the default short views are used in all cases. You will add RDF to this file as you
define your custom short views. The RDF statements will name the class of Individual, the Freemarker template, and any SPARQL queries that are used
to get the data you need to display.

The other thing you will need is the Freemarker template itself, to render your custom view.

An example of some custom short views can be found in this directory:

vivo/utilities/acceptance-tests/suites/ShortViews/

The directory contains a copy of shor t vi ew_confi g. n3, and some Freemarker templates. These files are essentially the same as the examples on this
page.

Detalls

The class association

A statement associates a custom short view with a VIVO Class from the ontology. For example:



vi vo: Facul t yMenber
di spl ay: hasCust onVi ew  mydonmi n: facul t ySear chVi ew .

This means that the specified short view will be used for any Individual that has vi vo: Facul t yMenber as a most specific class.

Only the most specific classes of an Individual are recognized by the short views. So if you want a custom short view to be used for all Person objects, you
must define it on Person and on FacultyMember and on FacultyMemberEmeritus, etc.

The cust onVi ewFor | ndi vi dual definition

An object is given a URI and declared to be a cust onVi ewFor | ndi vi dual

It may apply to one or more of the contexts: SEARCH, | NDEX, or BROWSE.
It must have an associated template, and may have one or more associated DataGetters.

Here is an example:

nydonei n: f acul t ySear chVi ew

a di spl ay: cust onVi ewFor | ndi vi dual ;
di spl ay: appl i esToCont ext " SEARCH" ;
di spl ay: hasTenpl ate "view search-faculty. ftl" ;

di spl ay: hasDat aGet t er nydomai n: f acul t yDepar t nent DG .

This custom view applies in the SEARCH context. It specifies a DataGetter, which will be invoked to find data each time this short view is rendered. It also
specifies the Freemarker template that will render the view.

The Spar ql Quer yDat aCet t er definition

The DataGetter must also be defined in the RDF, like this:

nydonei n: f acul t yDepar t ment DG
a dat agetters: Sparql QueryDat aGetter ;
di spl ay: saveToVar "details" ;
di spl ay: query e
PREFI X rdfs: <http://ww. w3. org/ 2000/ 01/ r df - schena#>
PREFI X vi vo: <http://vivoweb. org/ontol ogy/ core#>
SELECT ?dept Nane

WHERE {
?i ndi vi dual Uri  vi vo: hasMenber Rol e ?menbership .
?nmenber shi p vivo:rol eContri butesTo ?deptUri
?dept Uri
a vi vo: Acadeni cDepart nent ;
rdfs: | abel ?dept Nane .
}
LIMT 20

Besides the type and the URI, this object specifies a SPARQL query, and the name of a Freemarker variable where the results of the query will be stored.
When the SPARQL query is executed, the value of ?i ndi vi dual Ur| will be bound to the actual URI of the Individual being displayed. The values
returned from the query will be stored in an array of Freemarker Hash containers, with each one representing a row of the SPARQL query result. The Hash
will contain the values returned by the query, keyed to the variable names used in the query.

When this array of Hash containers has been constructed, it is stored in the variable named by the DataGetter declaration; det ai | s in this case.

The DataGetter is optional in a custom short view. If no DataGetter is specified, then the Freemarker template will only have the standard set of data
available to it.

Conversely, multiple DataGetters may be specified on a short view. If this is done, each DataGetter should assign to a different Freemarker variable, to
avoid problems with overwriting data.
The Freemarker template

A default template exists for each of the short view contexts: SEARCH, | NDEX and BROWSE.
If no custom short view is defined for an Individual, the default template will be used to render the Individual.



The custom template will likely be based on the default template for that context. For example, the default template for search results is called vi ew-
sear ch-defaul t. ftl and looks like this:

<#inmport "lib-vivo-properties.ftl" as p>
<a href="8%{individual.profileUl}" title="individual name">${individual.name}</a>
<@. di splayTitle individual />

<p cl ass="sni ppet">${i ndi vi dual . sni ppet}</p>

Our modified template is this:
<#inport "lib-vivo-properties.ftl" as p>
<a href="8%{individual.profileUl}" title="individual name">${individual.nanme}</a>
<@. di splayTitle individual />
<#if (details[0].deptNane)?? >
<span class="di splay-title">Menber of ${details[0].deptNane}</span>
</ #if>
<p cl ass="sni ppet">${i ndi vi dual . sni ppet } </ p>

So, if a department name was found for this Faculty member, it will be displayed. If more than one was found, the remainder will be ignored, since the
template only displays the first one.

The default template can be modified in the theme
Besides taking advantage of custom short views, the theme author may also choose to override the templates for the default short views. This would

merely require creating a new template with the same name as the one being overridden, and putting this new template into the template directory of your
theme.

Some examples

The scenario

When a FacultyMember appears in a short view, we would like to add the name of his/her department. This information isn't directly available, so we will
need to obtain it from a SPARQL query.

This should work in all three contexts, SEARCH, | NDEX, and BROABE.
This will only apply to FacultyMembers. Other individuals will use the default short views.

If the FacultyMember is not a member of a department, the short view should just omit the name, without causing an error.

SEARCH example

The default template
The default short view for the SEARCH context looks like this:

And it produces results like this:



Search results for 'Faculty’

Jog, Charlie | Faculty Member
... Dog Charlie Chair 123 Midway Street Brooktondale Mew York Member Age

Baker, Able | Faculty Member
... Instructor Instructor Afghanistan Instructor Agent Faculty Member Person

Specifying the custom short view

In the shor t vi ew_confi g. n3 configuration file, create these structures:

vi vo: Facul t yMenber
di spl ay: hasCust onVi ew  mydonmi n: facul t ySearchVi ew .

nmydomai n: f acul t ySear chVi ew

a di spl ay: cust onVi ewFor | ndi vi dual ;
di spl ay: appl i esToCont ext " SEARCH" ;

di spl ay: hasTenpl at e "view search-faculty.ftl" ;

di spl ay: hasDat aGet t er nmydonai n: facul t yDepart nent DG .

nydomai n: f acul t yDepar t mnent DG
a dat agetters: Sparql QueryDat aGetter ;
di spl ay: saveToVar "details" ;
di spl ay: query nen
PREFI X rdfs: <http://ww:. w3. org/ 2000/ 01/ r df - schenma#>
PREFI X vi vo: <http://vivoweb. org/ontol ogy/ core#>
SELECT ?dept Name

WHERE {
?i ndi vidual Ui vivo: hasMenber Rol e ?menber ship .
?menber shi p vivo:rol eContributesTo <?deptUri
?dept Uri
a vi vo: Academi cDepart nent ;
rdf s: | abel ?dept Nane .
}

LIMT 20

Create the template vi ew sear ch-facul ty. ftl tolook like this:
<#inport "lib-vivo-properties.ftl" as p>
<a href="${individual.profileUl}" title="individual nane">${individual.nanme}</a>
<@. di splayTitle individual />
<#if (detail s[0].deptName)?? >
<span class="di splay-title">Menber of ${detail s[0].deptNane}</span>

</ #i f>

<p cl ass="sni ppet">${i ndi vi dual . sni ppet}</p>



The new search results look like this:

Search results for 'faculty’

Dog, Charlie | Faculty Member | Member of Art Department
... Dog Charlie Chair 123 Midway Street Brooktondale New York Member Ag

Baker, Able | Faculty Member
... Instructor Instructor Afghanistan Instructor Agent Faculty Member Perso

INDEX example

The default template

The default short view for the | NDEX context looks like this:

<#inport "lib-properties.ftl" as p>
<a href="${individual.profileUl}" title="name">${individual.nane}</a>

<@. nost Speci fi cTypes individual />

And it produces results like this:

Faculty Member | RDF

Baker, Able

I::'U L-.] . [: |?| d | £

Specifying the custom short view

In the short vi ew_confi g. n3 configuration file, create these structures:



vi vo: Facul t yMenber
di spl ay: hasCust onVi ew  nydonmi n: facul tyl ndexVi ew .

nydonai n: facul tyl ndexVi ew

a di spl ay: cust onVi ewFor | ndi vi dual ;
di spl ay: appl i esToCont ext " | NDEX"

di spl ay: hasTenpl at e "viewindex-faculty.ftl" ;

di spl ay: hasDat aGet t er nmydonai n: facul t yDepart nent DG .

nydomai n: f acul t yDepar t nent DG
a dat agetters: Sparql QueryDat aGetter ;
di spl ay: saveToVar "details" ;
di spl ay: query nn
PREFI X rdfs: <http://ww. w3. org/ 2000/ 01/ r df - schema#>
PREFI X vi vo: <http://vivoweb. org/ontol ogy/ cor e#>
SELECT ?dept Name

WHERE {
?i ndi vidual Ui vivo: hasMenber Rol e ?nmenber ship .
?menber shi p vivo:rol eContributesTo <?deptUri
?dept Uri
a vi vo: Acadeni cDepart nent ;
rdf s: | abel ?dept Nane .
}
LIMT 20

Note that the DataGetter is the same as in the previous example. If two custom short views want to use the same DataGetter, there is no need to code it
twice. If both of these examples are tried at the same time, the two custom short views would refer to the same DataGetter.

Create the template vi ew- i ndex-facul ty. ftl to look like this:
<#inmport "lib-vivo-properties.ftl" as p>
<a href="8%{individual.profileUl}" title="individual name">${individual.nanme}</a>
<@. di splayTitle individual />
<#if (details[0].deptNane)?? >

<span class="di splay-title">Menber of ${detail s[0].deptNane}</span>
</ #if>

The new index looks like this:

Faculty Member

Baker, Able

Dog, Charlie | Member of Art Department

BROWSE example

The default template

The default short view for the BROASE context looks like this:



<#inmport "lib-properties.ftl" as p>
<li class="individual" role="listiten role="navigation">

<#i f (individual.thunbUrl)??>
<img src="${individual.thunmbUrl}" wi dth="90" alt="$%${individual.name}" />
<hl cl ass="t hunmb">
<a href="8%{individual.profileUl}" title="%${i1l8n().view profile_page_for}
${i ndi vi dual . name} } " >${i ndi vi dual . nane} </ a>
</ hl>
<#el se>
<hl>
<a href="%{individual.profileUl}" title="%${i1l8n().view profile_page_for}
${i ndi vi dual . nane}}">${i ndi vi dual . nane} </ a>
</ h1l>
</ #if>

<#tassi gn cl eanTypes =
‘edu. cornel | . mannl i b. vitro.webapp. web. Tenpl at eUt i | s$Dr opFr onSequence’ ?new() (i ndi vi dual . nost Speci fi cTypes,
vcl ass) />
<#if cleanTypes?size == 1>
<span class="title">${cl eanTypes[ 0] } </ span>
<#el sei f (cl eanTypes?size > 1) >
<span class="title">
<ul >
<#l i st cleanTypes as type>
<li>${type}</li>

</ #list>
</ ul >
</ span>
</ #if>
</li>

Notice that it contains some conditional logic, producing different results depending on whether there is an image file associated with the Individual, or
whether the type being browsed is the most specific type for the individual.

The default template produces results like this:

Faculty Member
Al A B CDEF GHI J KL MNOPORSTUWVWXY Z

Baker, Able

Dog, Charlie

Or this:



Person
Al A B CDEF GHI J KL MMNOPIORSTWUVWYV WXY Z

Baker, Able

Faculty Member

Dog, Charlie

Faculty Member

Specifying the custom short view

In the shor t vi ew_confi g. n3 configuration file, create these structures:



vi vo: Facul t yMenber
di spl ay: hasCust onVi ew  mydonai n: f acul t yBrowseVi ew .

nydonai n: f acul t yBrowseVi ew

a di spl ay: cust onVi ewFor | ndi vi dual ;
di spl ay: appl i esToCont ext " BROASE"

di spl ay: hasTenpl at e "view browse-faculty.ftl" ;

di spl ay: hasDat aGet t er nmydonai n: facul t yDepart nent DG ;

di spl ay: hasDat aGet t er nydonai n: facul tyPreferredTitl eDG .

nmydomai n: f acul t yDepart ment DG
a dat agetters: Spar gl QueryDat aGetter ;
di spl ay: saveToVar "details" ;
di spl ay: query nn
PREFI X rdfs: <http://ww.w3. org/ 2000/ 01/ r df - schena#>
PREFI X vi vo: <http://vivoweb. org/ontol ogy/ core#>
SELECT ?dept Nane

WHERE {
?i ndi vi dual Uri  vivo: hasMenber Rol e ?menbership .
?menber shi p vivo: rol eContributesTo ?deptUri
?dept Uri
a vi vo: Academ cDepart nent ;
rdf s: | abel ?dept Nare .
}
LIMT 20

nydonei n: facul tyPreferredTitl eDG
a dat agetters: Sparql QueryDat aCetter ;
di spl ay: saveToVar "extra" ;
di spl ay: query e
PREFI X rdfs: <http://ww. w3. org/ 2000/ 01/ r df - schema#>

PREFI X vi vo: <http://vivoweb. org/ontol ogy/ core#>

SELECT ?pt

WHERE {

?i ndi vidual Ui <http://vivoweb. org/ontol ogy/ core#preferredTitle> ?pt

}
LIMT 1

Note that the first DataGetter is the same as in the previous examples. If two custom short views want to use the same DataGetter, there is no need to
code it twice. If two or more of these examples are tried at the same time, the short views would each refer to the same DataGetter.

Also note that this short view uses two DataGetters. One stores its results in "details" and the other stores its results in "extra", so the freemarker template
will have access to both sets of results.

Create the template vi ew br owse-facul ty. ft| to look like this:



<#inmport "lib-properties.ftl" as p>
<li class="individual" role="listiten role="navigation">

<#i f (individual.thunmbUrl)??>
<img src="${individual.thunmbUrl}" wi dth="90" alt="$%${individual.name}" />
<hl cl ass="t hunmb">
<a href="8%{individual.profileUl}" title="View the profile page for
${i ndi vi dual . name} } " >${i ndi vi dual . nane} </ a>
</ hl>
<#el se>
<hl>
<a href="%{individual.profileUl}" title="View the profile page for
${i ndi vi dual . nane}}">${i ndi vi dual . nane} </ a>
</ h1l>
</ #if>

<#if (extra[0].pt)?? >
<span class="title">${extra[0].pt}</span>
<#el se>
<#tassi gn cl eanTypes =
"edu. cornell.nmannlib. vitro. webapp. web. Tenpl at eUt i | s$Dr opFr onSequence’ ?new( ) (i ndi vi dual .
nost Speci fi cTypes, vclass) />
<#i f cleanTypes?size == 1>
<span class="title">${cl eanTypes[ 0] } </ span>
<#tel sei f (cl eanTypes?size > 1) >
<span class="title">
<ul >
<#l i st cleanTypes as type>
<li>${type}</li>
</#list>
</ul >
</ span>
</#if>
</#if>

<#if (details[0].deptNane)?? >
<span class="title"><enm>Menber of </ em> ${detail s[0]. dept Nane}</span>
</#if>

</[li>

The new browse results look like this:

Faculty Member
Al A B CDEF GHI J KLMNOPORSTUWVWXY Z

Baker, Able

Dog, Charlie

Member of Art Department



Or this:

Person
Al A B CDEFGHI J] KLMNOPIORSTUWVWIXY Z

Baker, Able

Faculty Member

Dog, Charlie

Faculty Member

Member of Art Department

Troubleshooting

Errors in the template?

If the freemarker template for a short view contains syntax errors, the request will not throw an exception, which will be written to the VIVO log (vi vo. al | .
| 0g). The page will still render, but with an error message in place of the intended short view.

For example, in search results:

Search results for 'faculty’

Can't process the custom short view for Dog, Charlie

Can't process the custom short view for Baker, Able

In an index page:
Faculty Member  RDF
Can't process the custom short view for Baker, Able

Can't process the custom short view for Dog, Charlie



In browse results:

Faculty Member
Al A B CDEF GHI ) KLMNOPORSTUWVWWIXY Z

Can't parse the short view template 'view-browse-faculty.ftl' for Baker, Able

Can't parse the short view template 'view-browse-faculty.ftl' for Dog, Charlie

Errors in the Query?

If the SPARQL query defined in the configuration file contains syntax errors, the log will contain a stack trace for the exception. The information in the
exception may be cryptic, but will at least tell you where the error is located within the query.

For example:

2012-10-23 17: 25: 26,499 ERROR [ FreenarkerHtt pServl et] com hp. hpl.jena. query. QueryPar seExcepti on:
Encountered " <VARL1> "?individual Uri "" at |line 6, colum 1.
WAas expecting:

{

The page will not render properly. Instead it will show a standard error screen:

Home People Organizations Research Events

There was an error in the system.

Return to the home page

Errors in the config file?

Other errors in the configuration file may give less obvious results. For example, if your customView object calls for a data getter that does not exist, the
page will attempt to render without that data. If the data from that data getter is optional, you will see no error indicator except for a message in vi vo. al | .

| og

Notes

Waiting for the Application and Display Ontology

This implementation of short views is intended to be temporary, pending the implementation of the Application and Display Ontology (A&DO).



Much of the RDF that is entered in the configuration file (shor t vi ew_conf i g. n3) should be replaced by triples in the A&DO. It's not clear where the
SPARQL queries will be specified.

Classes are not inferred

Short views are applied based on the most-specific classes of the Individual. No inference is done when trying to find applicable views. So if an Individual
has a type of FacultyMember, then a short view that applies to Person will not be used. Even though the Indvidual should also have a type of Person, it will
not be among the most specific types for the Individual, and so does not apply. If you want a short view to apply to all sub-classes of Person, you must
explicitly list each of these sub-classes in short vi ew_confi g. n3

This is expected to change when the Application and Display Ontology is used.

More than one applicable short view

In theory, it is possible that an Individual may qualify for two short views simultaneously. An Individual could have two most specific types (say
FacultyMember and ExemptEmployee), and both of those types might have configured short views. Or, in the degenerate case, there might be multiple
short views configured for a single type.

In these cases, one of the applicable short views will be arbitrarily selected.

Hard-coded BROWSE view for People

In the BROWSE context, if no short view is found for a given class URI, but that class is included in the People classgroup, a hard-coded short view is
applied. This is to maintain compatibility with previous versions.

It is hoped that the Application and Display Ontology will be expressive enough to configure this behavior within the standard mechanism. Until then, it is
coded into the class
edu. cornel | . mannli b. vi tro. webapp. servi ces. shortvi ew. FakeAppl i cati onOnt ol ogyServi ce



	Creating short views of individuals

