
Ordering
RDF, as a graph, is inherently unordered, and this can lead to difficulty when forms of description that presuppose ordering are translated into it. The
Fedora community is trying several methods for constructing . Here are some examples:order in a graph

PCDM Ordering

The choice of how to represent ordering is up to you. In the following discussion we'll consider an ordered list of authors for an academic research paper.
Generally the authors of these papers care about the order they are cited, and so in this scenario we must retain their ordering.

First a caveat: one might be tempted to use a structure that relies on RDF "blank nodes", such as most tools generate by default from the Collection
notation in RDF Turtle. As mentioned in , blank nodes are not well-defined in the repository context and should Common metadata design patterns
generally not be used in Fedora. So here's an example of what to avoid:

 @prefix dc: <http://purl.org/dc/elements/1.1/> .
 <>
 dc:title "Important Academic Research Paper" ;
 # Avoid the following
 dc:creator (<http://example.com/author/Quinn> #no
 <http://example.com/author/Alice> #no
 <http://example.com/author/Bob>) . #no

That example creates a bunch of blank nodes, which then get mangled going into Fedora. Let's not do that.

Here's a very simple alternative formation that gets the job done. We use hash-URIs instead of blank nodes.

 @prefix dc: <http://purl.org/dc/elements/1.1/> .
 @prefix owl: <http://www.w3.org/2002/07/owl#> .
 <>
 dc:title "Test title" ;
 dc:creator <#author_1>, <#author_2>, <#author_3> .
 <#author_1> owl:sameAs <http://example.com/author/Quinn> .
 <#author_2> owl:sameAs <http://example.com/author/Alice> .
 <#author_3> owl:sameAs <http://example.com/author/Bob> .

In addition to being Fedora-friendly, this formulation is arguably better from a representational standpoint: anybody iterating the triples can query for the
paper by author without having to jump through rdf:list hijinx. Of course, those consumers that care about the ordering would need to parse the number out
of the hash part of each URI and sort by that. For plenty of people that's good enough.

What if you wanted to represent ordering as a separate number, rather than parsing the hash-URIs? Here's a slightly more complex version that
accomplishes that; here, each hash URIs can be anything you want, and the ordering is stored as a separate triple:

 @prefix dc: <http://purl.org/dc/elements/1.1/> .
 @prefix owl: <http://www.w3.org/2002/07/owl#> .
 @prefix schema: <https://schema.org/> .
 <>
 dc:title "Test title" ;
 dc:creator <#xyz>, <#abc>, <#123> .
 <#xyz> owl:sameAs <http://example.com/author/Quinn>; schema:Order 1 .
 <#abc> owl:sameAs <http://example.com/author/Alice>; schema:Order 2 .
 <#123> owl:sameAs <http://example.com/author/Bob> ; schema:Order 3 .

If you prefer, you could go with a PCDM-style proxy ordering approach. This generates the most triples of any approach we've considered, but for some
tool chains it makes good sense.

 @prefix dc: <http://purl.org/dc/elements/1.1/> .
 @prefix iana: <http://www.iana.org/assignments/relation/> .
 @prefix ore: <http://www.openarchives.org/ore/1.0/datamodel#> .
 <>
 dc:title "Test title" ;
 dc:creator <#creators> .
 <#creators> a ore:Aggregation;
 iana:first <#xyz>;
 iana:last <#123> .
 <#xyz> ore:proxyFor <http://example.com/author/Quinn>;
 ore:proxyIn <#creators>;
 iana:next <#abc> .
 <#abc> ore:proxyFor <http://example.com/author/Alice>;
 ore:proxyIn <#creators>;
 iana:prev <#xyz> ;
 iana:next <#123> .
 <#123> ore:proxyFor <http://example.com/author/Bob>;
 ore:proxyIn <#creators>;
 iana:prev <#abc> .

As you can see there are many ways to do this, depending on how you want to model your metadata. Let's consider one final version in which we model
authorship as an event which records not just the author involved but also the date of their involvement.

http://infolab.stanford.edu/~stefan/daml/order.html
https://github.com/duraspace/pcdm/wiki#ordering-extension
https://wiki.lyrasis.org/display/FEDORA47/Common+metadata+design+patterns

 @prefix dc: <http://purl.org/dc/elements/1.1/> .
 @prefix ex: <http://example.com/relations/> .
 <>
 dc:title "Test title" ;
 dc:creator <#authA>, <#authB>, <#authC> .
 <#authA> a ex:Authorship;
 ex:occurredOn "2016-05-15";
 ex:authorInvolved <http://example.com/author/Quinn>;
 ex:followingAuthor <#authB> .
 <#authB> a ex:Authorship;
 ex:occurredOn "2016-05-15";
 ex:authorInvolved <http://example.com/author/Alice>;
 ex:followingAuthor <#authC> .
 <#authC> a ex:Authorship;
 ex:occurredOn "2016-05-15";
 ex:authorInvolved <http://example.com/author/Bob> .

	Ordering

