
LDP-PCDM-F4 In Action
Due to the evolution of usage patterns for PCDM (particularly as they relate to Fedora), the structure of resources described in this guide is not necessarily
the recommended structure.
However, the details and examples of how to use LDP Direct and Indirect Containers are still very informative in understanding how those constructs work.

-- 2015-10-30Andrew Woods

Fedora4 (F4) implements the (LDP) W3C Recommendation. Additionally, the (PCDM) has Linked Data Platform Portland Common Data Model
increasingly become adopted as a common content modeling approach in Fedora4.

LDP defines terminology and interaction models relating to linked data resources and servers. The "action" in inter"action" models should be emphasized,
because LDP introduces two new concepts that enhance the actions within a linked data server, F4 in this case. These concepts are:

DirectContainer
IndirectContainer

These two container types have associated behavior that are highlighted and clarified here, in this guide. Two different uses of DirectContainers are
illustrated in the Book and Ordering examples, respectively, and the use of IndirectContainers is described in the Collections example.

This guide is designed to describe the details of both LDP and PCDM in the context of F4 by walking through a simple example of a single collection,
consisting of a single book that implements page ordering.

Note0: Although the following example uses specifically named resources, such as "poe" and "raven", production scenarios will likely use opaque
identifiers/URLs by allowing them to be auto-generated by F4.

An easy way to stand-up an environment for executing the following REST requests is to use . Note1: fcrepo4-vagrant
 F4 is deployed in the fcrepo4-vagrant box with the context "fcrepo". If you are deploying in another environment, you may need to change the Note1a:

"curl" requests and turtle files (*.ttl) below to reflect a different context.
 Please use your Internet browser to inspect the results of each of the steps below! http://localhost:8080/fcrepo/restNote2:

The full slide deck of images are available for .ldp-pcdm-f4.pdf

End Goal - Final State

Books In Action

Error rendering macro 'panel'

com.atlassian.renderer.v2.macro.basic.validator.MacroParameterValidationException: Border style is not a valid CSS2 border-style value

https://wiki.lyrasis.org/display/~awoods
http://www.w3.org/TR/ldp/
https://github.com/duraspace/pcdm/wiki
https://github.com/fcrepo4-labs/fcrepo4-vagrant
https://wiki.lyrasis.org/download/attachments/90966061/ldp-pcdm-f4.pdf?version=1&modificationDate=1506550363669&api=v2

1: Final State - Book

The ldp:BasicContainers are simply containers of other resources. BasicContainers can contain both other containers as well as ldp:NonRdfSources (or
"binaries").
There are three PCDM types here:

pcdm:Object
pcdm:Collection
pcdm:File

Additionally, there are two PCDM relationships that indicate resource membership and file membership:

pcdm:hasMember
pcdm:hasFile

The descriptions of these resource types and relationships may be found in the detailed page.Portland Common Data Model

Book - Create DirectContainer
Book - Create Cover
Book - Create Page0
Book - Create Page1
Cover - Create DirectContainer
Cover - Create Files
Page0 - Create DirectContainer
Page0 - Create Files
Page1 - Create DirectContainer
Page1 - Create Files
Book - Conclusion

Book - Create DirectContainer

Book - Create DirectContainer

Here we will begin to walk through the mechanics of creating the structures that will facilitate creation of the book and its pages.

https://github.com/duraspace/pcdm/wiki

First, create the top-level "objects/" pcdm:Object, which is also an ldp:BasicContainer.

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @pcdm-object.ttl localhost:8080/fcrepo/rest/objects/

Where "pcdm-object.ttl" follows:

pcdm-object.ttl

@prefix pcdm: <http://pcdm.org/models#>

<> a pcdm:Object .

Second, create the nested "raven/" pcdm:Object, which is also another ldp:BasicContainer.

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @pcdm-object.ttl localhost:8080/fcrepo/rest/objects
/raven/

Lastly, create an ldp:DirectContainer, "pages/" that will facilitate the establishment of relationships between "raven/" and its constituent pages.

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @ldp-direct.ttl localhost:8080/fcrepo/rest/objects
/raven/pages/

Where "ldp-direct.ttl" follows:

ldp-direct.ttl

@prefix ldp: <http://www.w3.org/ns/ldp#>
@prefix pcdm: <http://pcdm.org/models#>

<> a ldp:DirectContainer, pcdm:Object ;
 ldp:membershipResource </fcrepo/rest/objects/raven/> ;
 ldp:hasMemberRelation pcdm:hasMember .

An ldp:DirectContaner is an LDP construct that activates the creation of certain RDF triples when a new resource is added as a child of this container.
Specifically, when a new resource is added inside of the "pages/" DirectContainer, a new triple on the ldp:membershipResource ("raven/") will be
created with the predicate defined by the ldp:hasMemberRelation property ("pcdm:hasMember") and an object that is a reference to the new resource.

The auto-created triple resulting from the addition of a new child resource within "pages/" will take the form:

<http://localhost:8080/fcrepo/rest/objects/raven/> <pcdm:hasMember> <new-resource>

We will see this in action next!

Book - Create Cover

Book - Create cover

Create a new pcdm:Object, "cover/", that is also an ldp:BasicContainer within the "pages/" DirectContainer.

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @pcdm-object.ttl localhost:8080/fcrepo/rest/objects
/raven/pages/cover/

Where "pcdm-object.ttl" follows:

pcdm-object.ttl

@prefix pcdm: <http://pcdm.org/models#>

<> a pcdm:Object .

As described in the previous step, the addition of "cover/" automatically creates the following new triple on "raven/"

<http://localhost:8080/fcrepo/rest/objects/raven/> pcdm:hasMember <http://localhost:8080/fcrepo/rest/objects
/raven/pages/cover/>

Restating from the previous step,

the subject of the triple comes from the "ldp:membershipResource" defined on "pages/"
the predicate of the triple comes from the "ldp:hasMemberRelation" defined on "pages/", and
the object of the triple is the new resource ("cover/") that was added to the ldp:DirectContainer ("pages/")

Book - Create Page0

Book - Create Page0

 In the same fashion as the previous step, adding "page0/" to the DirectContainer, "pages/" results in a new auto-generated triple on "raven/" of the form:

<http://localhost:8080/fcrepo/rest/objects/raven/> pcdm:hasMember <http://localhost:8080/fcrepo/rest/objects
/raven/pages/page0/>

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @pcdm-object.ttl localhost:8080/fcrepo/rest/objects
/raven/pages/page0/

Book - Create Page1

Book - Create Page1

This step in creating the final page, "page1/", follows the same pattern shown in the previous two steps.

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @pcdm-object.ttl localhost:8080/fcrepo/rest/objects
/raven/pages/page1/

Cover - Create DirectContainer

Cover - Create DirectContainer

In the same way that we used an ldp:DirectContainer to facilitate the auto-generation of triples linking "raven/" to each of the pages, now use the same
pattern to auto-generate the creation of triples that link each page pcdm:Object to their various file representations.

To begin with, create an ldp:DirectContainer, "files/", which is also a pcdm:Object, as a child of "cover/" as follows:

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @ldp-cover-direct.ttl localhost:8080/fcrepo/rest
/objects/raven/pages/cover/files/

Where "ldp-cover-direct.ttl" follows:

ldp-cover-direct.ttl

@prefix ldp: <http://www.w3.org/ns/ldp#>
@prefix pcdm: <http://pcdm.org/models#>

<> a ldp:DirectContainer, pcdm:Object ;
 ldp:membershipResource </fcrepo/rest/objects/raven/pages/cover/> ;
 ldp:hasMemberRelation pcdm:hasFile .

Now, any new resource that is added as a child of the DirectContainer "files/" will cause the auto-generation of a new triple on "cover/" that has a
predicate of pcdm:hasFile and an object of the new resource.

Cover - Create Files

Cover - Create Files

Once again, we demonstrate the use of LDP in creating PCDM relationships simply as a result of repository interactions.

Add two pcdm:File resources to the DirectContainer, "files/" as follows:

curl -i -XPUT -H"Content-Type: image/jpeg" --data-binary @cover.jpg localhost:8080/fcrepo/rest/objects/raven
/pages/cover/files/cover.jpg

Where " " is attached.cover.jpg

If you perform a subsequent HTTP HEAD on this new resource, you will see there is a "Link" header of rel="describedby". Update the RDF metadata of
the ldp:NonRdfSource to specify that the resource is a pcdm:File, as follows:

curl -i -XPATCH -H"Content-Type: application/sparql-update" --data-binary @pcdm-file.ru localhost:8080/fcrepo
/rest/objects/raven/pages/cover/files/cover.jpg/fcr:metadata

Where "pcdm-file.ru" follows:

pcdm-file.ru

PREFIX pcdm: <http://pcdm.org/models#>
INSERT {
 <> a pcdm:File
} WHERE {
}

Repeat for the attached TIFF, cover.tif

curl -i -XPUT -H"Content-Type: image/tiff" --data-binary @cover.tif localhost:8080/fcrepo/rest/objects/raven
/pages/cover/files/cover.tif
curl -i -XPATCH -H"Content-Type: application/sparql-update" --data-binary @pcdm-file.ru localhost:8080/fcrepo
/rest/objects/raven/pages/cover/files/cover.tif/fcr:metadata

After creating the two "cover" resources, an HTTP GET on "cover/" will include the two new triples:

<http://localhost:8080/fcrepo/rest/objects/raven/pages/cover/> pcdm:hasFile <http://localhost:8080/fcrepo/rest
/objects/raven/pages/cover/files/cover.jpg>
<http://localhost:8080/fcrepo/rest/objects/raven/pages/cover/> pcdm:hasFile <http://localhost:8080/fcrepo/rest
/objects/raven/pages/cover/files/cover.tif>

Once again,

https://wiki.lyrasis.org/download/attachments/90966082/cover.jpg?version=1&modificationDate=1506550363976&api=v2
https://wiki.lyrasis.org/download/attachments/90966082/cover.jpg?version=1&modificationDate=1506550363976&api=v2

the subject of the triple comes from the "ldp:membershipResource" defined on "files/"
the predicate of the triple comes from the "ldp:hasMemberRelation" defined on "files/", and
the object of the triple is the new resource ("cover.jpg" or "cover.tif") that was added to the ldp:DirectContainer ("files/")

Page0 - Create DirectContainer

Page0 - Create DirectContainer

Here we repeat the exact steps as for the "cover/" above, but for "page0/".

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @ldp-page0-direct.ttl localhost:8080/fcrepo/rest
/objects/raven/pages/page0/files/

Where "ldp-page0-direct.ttl" follows:

ldp-page0-direct.ttl

@prefix ldp: <http://www.w3.org/ns/ldp#>
@prefix pcdm: <http://pcdm.org/models#>

<> a ldp:DirectContainer, pcdm:Object ;
 ldp:membershipResource </fcrepo/rest/objects/raven/pages/page0/> ;
 ldp:hasMemberRelation pcdm:hasFile .

Page0 - Create Files

Page0 - Create Files

Here we add the attached page0 files (and) to the newly created DirectContainer. page0.jpg page0.tif

curl -i -XPUT -H"Content-Type: image/jpeg" --data-binary @page0.jpg localhost:8080/fcrepo/rest/objects/raven
/pages/page0/files/page0.jpg
curl -i -XPUT -H"Content-Type: image/tiff" --data-binary @page0.tif localhost:8080/fcrepo/rest/objects/raven
/pages/page0/files/page0.tif

Followed by assigning the type of pcdm:File to the respective RDF Sources found in the "Link; rel=describedby" header of each of the ldp:
NonRdfSources.

curl -i -XPATCH -H"Content-Type: application/sparql-update" --data-binary @pcdm-file.ru localhost:8080/fcrepo
/rest/objects/raven/pages/page0/files/page0.jpg/fcr:metadata
curl -i -XPATCH -H"Content-Type: application/sparql-update" --data-binary @pcdm-file.ru localhost:8080/fcrepo
/rest/objects/raven/pages/page0/files/page0.tif/fcr:metadata

Where "pcdm-file.ru" follows:

pcdm-file.ru

PREFIX pcdm: <http://pcdm.org/models#>
INSERT {
 <> a pcdm:File
} WHERE {
}

Page1 - Create DirectContainer

https://wiki.lyrasis.org/download/attachments/90966082/page0.jpg?version=1&modificationDate=1506550364429&api=v2
https://wiki.lyrasis.org/download/attachments/90966082/page0.tif?version=1&modificationDate=1506550364461&api=v2

Page1 - Create DirectContainer

Here we repeat the exact steps as for the "page0/" above, but for "page1/".

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @ldp-page1-direct.ttl localhost:8080/fcrepo/rest
/objects/raven/pages/page1/files/

Where "ldp-page1-direct.ttl" follows:

ldp-page1-direct.ttl

@prefix ldp: <http://www.w3.org/ns/ldp#>
@prefix pcdm: <http://pcdm.org/models#>

<> a ldp:DirectContainer, pcdm:Object ;
 ldp:membershipResource </fcrepo/rest/objects/raven/pages/page1/> ;
 ldp:hasMemberRelation pcdm:hasFile .

Page1 - Create Files

Page1 - Create Files

Finally, we add the attached page1 files (and) to the newly created DirectContainer. page1.jpg page1.tif

curl -i -XPUT -H"Content-Type: image/jpeg" --data-binary @page1.jpg localhost:8080/fcrepo/rest/objects/raven
/pages/page1/files/page1.jpg
curl -i -XPUT -H"Content-Type: image/tiff" --data-binary @page1.tif localhost:8080/fcrepo/rest/objects/raven
/pages/page1/files/page1.tif

Followed by assigning the type of pcdm:File to the respective RDF Sources found in the "Link; rel=describedby" header of each of the ldp:
NonRdfSources.

curl -i -XPATCH -H"Content-Type: application/sparql-update" --data-binary @pcdm-file.ru localhost:8080/fcrepo
/rest/objects/raven/pages/page1/files/page1.jpg/fcr:metadata
curl -i -XPATCH -H"Content-Type: application/sparql-update" --data-binary @pcdm-file.ru localhost:8080/fcrepo
/rest/objects/raven/pages/page1/files/page1.tif/fcr:metadata

Where "pcdm-file.ru" follows:

pcdm-file.ru

PREFIX pcdm: <http://pcdm.org/models#>
INSERT {
 <> a pcdm:File
} WHERE {
}

Book - Conclusion

Using LDP in conjunction with PCDM terms, we have created a book, "raven/", with its constituent pages and their file representations.

Collections In Action

https://wiki.lyrasis.org/download/attachments/90966082/page1.jpg?version=1&modificationDate=1506550364493&api=v2
https://wiki.lyrasis.org/download/attachments/90966082/page1.jpg?version=1&modificationDate=1506550364493&api=v2

2: Final State - Collection

Continuing with the previous example of modeling and creating a book with LDP, PCDM and F4, here we will detail an approach for adding that book,
"raven/" to a new collection, "poe/".

The objective in this section is to leverage LDP interaction models to not only create the appropriate pcdm:hasMember relationship between the
collection "poe/" and the book "raven/", but to put the LDP structure in place for a simplified addition of new items to the "poe/" collection.

Collection - Create IndirectContainer
Collection - Create Raven Proxy
Collection - Conclusion

Collection - Create IndirectContainer

Collection - Create IndirectContainer

Here we will begin to walk through the mechanics of creating the structures that will facilitate creation of the collection and its single member, in this
case.

First, create the top-level "collections/" pcdm:Object, which is also an ldp:BasicContainer.

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @pcdm-object.ttl localhost:8080/fcrepo/rest
/collections/

Where "pcdm-object.ttl" follows:

pcdm-object.ttl

@prefix pcdm: <http://pcdm.org/models#>

<> a pcdm:Object .

Second, create the nested "poe/" pcdm:Collection, which is also another ldp:BasicContainer.

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @pcdm-collection.ttl localhost:8080/fcrepo/rest
/collections/poe/

Where "pcdm-collection.ttl" follows:

@prefix pcdm: <http://pcdm.org/models#>

<> a pcdm:Collection .

Lastly, create an ldp:IndirectContainer, "members/" that will facilitate the establishment of relationships between "poe/" and the collection members.

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @ldp-indirect.ttl localhost:8080/fcrepo/rest
/collections/poe/members/

Where "ldp-indirect.ttl" follows:

ldp-indirect.ttl

@prefix ldp: <http://www.w3.org/ns/ldp#>
@prefix pcdm: <http://pcdm.org/models#>
@prefix ore: <http://www.openarchives.org/ore/terms/>

<> a ldp:IndirectContainer, pcdm:Object ;
 ldp:membershipResource </fcrepo/rest/collections/poe/> ;
 ldp:hasMemberRelation pcdm:hasMember ;
 ldp:insertedContentRelation ore:proxyFor .

Similar to the previously described ldp:DirectContainer, an ldp:IndirectContainer is an LDP construct that also activates the creation of certain RDF
triples when a new resource is added as a child of this container.
Just like with a DirectContainer, when a new resource is added inside of the "members/" IndirectContainer, a new triple on the ldp:
membershipResource ("poe/") will be created with the predicate defined by the ldp:hasMemberRelation property ("pcdm:hasMember").
However, the difference from a DirectContainer is that the object of the created triple is not the newly added child, but instead the resource defined by
the ldp:insertedContentRelation property (ore:proxyFor, in this case) found on the newly added child of this container.

We will see this in action next!

Collection - Create Raven Proxy

Collection - Create Raven Proxy

Create a new pcdm:Object, "ravenProxy/", that is an ldp:RdfSource within the "members/" IndirectContainer.

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @pcdm-raven-proxy.ttl localhost:8080/fcrepo/rest
/collections/poe/members/ravenProxy

Where "pcdm-object.ttl" follows:

pcdm-raven-proxy.ttl

@prefix pcdm: <http://pcdm.org/models#>
@prefix ore: <http://www.openarchives.org/ore/terms/>

<> a pcdm:Object ;
 ore:proxyFor </fcrepo/rest/objects/raven/> .

As mentioned in the previous step, the addition of "ravenProxy/" automatically creates the following new triple on "poe/".

<http://localhost:8080/fcrepo/rest/collections/poe/> pcdm:hasMember <http://localhost:8080/fcrepo/rest/objects
/raven/>

The ldp:IndirectContainer defines the creation of this triple as follows:

the subject of the triple comes from the "ldp:membershipResource" defined on "members/"
the predicate of the triple comes from the "ldp:hasMemberRelation" defined on "members/", and
the object of the triple is the resource defined by the ldp:insertedContentRelation property (ore:proxyFor) found on the newly added child
resource, "ravenProxy".

Collection - Conclusion

Using LDP in conjunction with PCDM terms, we have created a collection, "poe/", with its single member, "raven/".

Ordering In Action

3: Final State - Ordered Pages

This final example will both illustrate a second use of ldp:DirectContainers as well as detail the PCDM recommendation for how to handle ordering of
resources.

The addtional predicates/relationships that will be used in this example are:

ore:proxyIn
ore:proxyFor
iana:first
iana:next
iana:prev
iana:last

...all of which are further described in the .Portland Common Data Model

Ordering - Create DirectContainer
Ordering - Create Cover Proxy
Ordering - Create Page0 Proxy
Ordering - Create Page1 Proxy
Ordering - Create Next and Prev
Ordering - Create First and Last
Ordering - Conclusion

Ordering - Create DirectContainer

https://github.com/duraspace/pcdm/wiki

Ordering - Create DirectContainer

As in the book example, begin with creating an ldp:DirectContainer, "orderProxies/", as a child of the book, "raven/", resource. This new DirectContainer
will facilitate the auto-creation of triples that will define the membership relationship between the book, "raven/", and the proxies. Then, the new proxy
resources within this DirectContainer will be used to establish an ordering of the books pages.

Note: This example assumes the previous creation of "/objects/raven/" and the cover and page resources from the Book example in this series.

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @ldp-ordering-direct.ttl localhost:8080/fcrepo/rest
/objects/raven/orderProxies/

Where "ldp-ordering-direct.ttl" follows:

ldp-ordering-direct.ttl

@prefix ldp: <http://www.w3.org/ns/ldp#>
@prefix pcdm: <http://pcdm.org/models#>
@prefix ore: <http://www.openarchives.org/ore/terms/>

<> a ldp:DirectContainer, pcdm:Object ;
 ldp:membershipResource </fcrepo/rest/objects/raven/> ;
 ldp:isMemberOfRelation ore:proxyIn .

An ldp:DirectContaner is an LDP construct that activates the creation of certain RDF triples when a new resource is added as a child of this container.

Like the "pages/" DirectContainer in an earlier example, the "orderProxies/" includes the ldp:membershipResource property ("raven/"). However, it is
important to point out that the "orderProxies/" DirectContainer *does not* have the ldp:hasMemberRelation property defined, but instead uses ldp:
isMemberOfRelation of "ore:proxyIn".
By using ldp:isMemberOfRelation, the auto-created triple resulting from the addition of a new child resource within "orderProxies/" will take the form:

<new-resource> <ore:proxyIn> <http://localhost:8080/fcrepo/rest/objects/raven/>

We will see this in action next!

Ordering - Create Cover Proxy

Ordering - Create Cover Proxy

 Create a new pcdm:Object, "coverProxy/", that is also an ldp:RdfSource within the "orderProxies/" DirectContainer.

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @ldp-cover-proxy.ttl localhost:8080/fcrepo/rest
/objects/raven/orderProxies/coverProxy

Where "ldp-cover-proxy.ttl" follows:

ldp-cover-proxy.ttl

@prefix pcdm: <http://pcdm.org/models#>
@prefix ore: <http://www.openarchives.org/ore/terms/>

<> a pcdm:Object ;
 ore:proxyFor </fcrepo/rest/objects/raven/pages/cover> .

As described in the previous step, the addition of "coverProxy" automatically creates the following new triple on "coverProxy"

<http://localhost:8080/fcrepo/rest/objects/raven/orderProxies/coverProxy> ore:proxyIn <http://localhost:8080
/fcrepo/rest/objects/raven>

Restating from the previous step,

the subject of the triple is the new resource ("coverProxy") that was added to the ldp:DirectContainer ("orderProxies/")
the predicate of the triple comes from the "ldp:isMemberOfRelation" defined on "orderProxies/", and
the object of the triple comes from the "ldp:membershipResource" defined on "orderProxies/"

Ordering - Create Page0 Proxy

Ordering - Create Page0 Proxy

 In the same fashion as the previous step, adding "page0Proxy" to the DirectContainer, "orderProxies/" results in a new auto-generated triple on
"page0Proxy" of the form:

<http://localhost:8080/fcrepo/rest/objects/raven/orderProxies/page0Proxy> ore:proxyIn <http://localhost:8080
/fcrepo/rest/objects/raven>

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @ldp-page0-proxy.ttl localhost:8080/fcrepo/rest
/objects/raven/orderProxies/page0Proxy

Where "ldp-page0-proxy.ttl" follows:

ldp-page0-proxy.ttl

@prefix pcdm: <http://pcdm.org/models#>
@prefix ore: <http://www.openarchives.org/ore/terms/>

<> a pcdm:Object ;
 ore:proxyFor </fcrepo/rest/objects/raven/pages/page0/> .

Ordering - Create Page1 Proxy

Ordering - Create Page1 Proxy

This step in creating the final page, "page1Proxy", follows the same pattern shown in the previous two steps.

curl -i -XPUT -H"Content-Type: text/turtle" --data-binary @ldp-page1-proxy.ttl localhost:8080/fcrepo/rest
/objects/raven/orderProxies/page1Proxy

Where "ldp-page1-proxy.ttl" follows:

ldp-page1-proxy.ttl

@prefix pcdm: <http://pcdm.org/models#>
@prefix ore: <http://www.openarchives.org/ore/terms/>

<> a pcdm:Object ;
 ore:proxyFor </fcrepo/rest/objects/raven/pages/page1/> .

Ordering - Create Next and Prev

Ordering - Create Next and Prev

Now that the proxies have been created, and associated with the book ("raven/") and the proxied resources, we can actually use the proxies to
establish ordering, per the PCDM recommendations.
First, establish the order among the proxies with iana:next and iana:prev.

 1) Establish "page0Proxy":"coverProxy" has iana:next of

curl -i -XPATCH -H"Content-Type: application/sparql-update" --data-binary @iana-cover-proxy.ru localhost:8080
/fcrepo/rest/objects/raven/orderProxies/coverProxy

Where "iana-cover-proxy.ru" follows:

iana-cover-proxy.ru

PREFIX iana: <http://www.iana.org/assignments/relation/>

INSERT {
 <> iana:next </fcrepo/rest/objects/raven/orderProxies/page0Proxy>
} WHERE {
}

2) Establish both:

"coverProxy", and"page0Proxy" has iana:prev of
"page1Proxy":"page0Proxy" has iana:next of

curl -i -XPATCH -H"Content-Type: application/sparql-update" --data-binary @iana-page0-proxy.ru localhost:8080
/fcrepo/rest/objects/raven/orderProxies/page0Proxy

Where "iana-page0-proxy.ru" follows:

iana-page0-proxy.ru

PREFIX iana: <http://www.iana.org/assignments/relation/>

INSERT {
 <> iana:next </fcrepo/rest/objects/raven/orderProxies/page1Proxy> .
 <> iana:prev </fcrepo/rest/objects/raven/orderProxies/coverProxy>
} WHERE {
}

3) Establish "page1Proxy" has iana:prev of "page0Proxy":

curl -i -XPATCH -H"Content-Type: application/sparql-update" --data-binary @iana-page1-proxy.ru localhost:8080
/fcrepo/rest/objects/raven/orderProxies/page1Proxy

Where "iana-page1-proxy.ru" follows:

iana-page1-proxy.ru

PREFIX iana: <http://www.iana.org/assignments/relation/>

INSERT {
 <> iana:prev </fcrepo/rest/objects/raven/orderProxies/page0Proxy>
} WHERE {
}

Ordering - Create First and Last

Ordering - Create First and Last

 Finally, the very last step is to define from the book's perspective, the iana:first and iana:last pages of "raven/".

Establish both:

"raven/" has iana:first of "coverProxy", and
"raven/" has iana:last of "page1Proxy":

curl -i -XPATCH -H"Content-Type: application/sparql-update" --data-binary @iana-raven.ru localhost:8080/fcrepo
/rest/objects/raven/

Where "iana-raven.ru" follows:

iana-raven.ru

PREFIX iana: <http://www.iana.org/assignments/relation/>

INSERT {
 <> iana:first </fcrepo/rest/objects/raven/orderProxies/coverProxy> .
 <> iana:last </fcrepo/rest/objects/raven/orderProxies/page1Proxy>
} WHERE {
}

Ordering - Conclusion

Using LDP in conjunction with PCDM terms, we have established the ordering of pages within the book, "raven/".

	LDP-PCDM-F4 In Action

