Accessing VIVO Data Models

® Accessing the models

[e]
[e]
[e]
[e]
[e]

Attributes on Context, Session, or Request
The DAO layer

OntModelSelectors

The RDF Service

Model makers and Model sources

® The ModelAccess class
® |[nitializing the Models

[e]
[e]
[e]

o

Where are the RDF files?

The "first time"

Initializing Configuration models
= Application metadata
® User Accounts
® The Display model
= Display TBox
= DisplayDisplay

Initializing Content models
® base ABox
" base TBox

base Full

inference ABox

inference TBox

inference Full

union ABox

union TBox

= union Full

® Transition from previous methods

Accessing the models

There is an incredible variety of ways to access all of these models. Some of this variety is because the models are accessed in different ways for different
purposes. Additional variety stems from the evolution of VIVO in which new mechanisms were introduced without taking the time and effort to phase out
older mechanisms.

Here are some of the ways for accessing data models:

Attributes on Context, Session, or Request

Previously, it was common to assign a model to the ServletContext, to the HTTP Session, or to the HttpSessionRequest like this:

Ont Model ont Model = (Ont Model) get Servl et Context().getAttribute("jenaOntModel");

oj ect sessi onOnt Mbdel = request. get Session().getAttribute("jenaOnt Mbdel");

ctx.setAttribute("jenaOntMdel ", masterUnion);

Occasionally, conditional code was inserted, to retrieve a model from the Request if available, and to fall back to the Session or the Context as necessary.
Such code was sporadic, and inconsistent. This sort of model juggling also involved inversions of logic, with some code acting so a model in the Request
would override one in the Session, while other code would prioritize the Session model over the one in the Request. For example:

public Ont Model getDi spl ayMdel (){
if(_req.getAttribute("displayOntMdel™) !'= null){
return (Ont Mbdel) _req.getAttribute(D SPLAY_ONT_MODEL) ;

} else {
Ht t pSessi on session = _req. get Session(fal se);
if(session !=null){

if(session.getAttribute(D SPLAY ONT_MODEL) !'= null){
return (Ont Mbdel) session. get Attri bute(DI SPLAY_ONT_MODEL) ;
}el sef
if(session.getServletContext().getAttribute(D SPLAY_ONT_MODEL) != null){
return (Ont Mbdel) sessi on. get Servl et Context().getAttribute(Dl SPLAY_ONT_MODEL) ;

}
}
}
}
log.error("No display nodel could be found.");
return null;

This mechanism has been removed in 1.6, being subsumed into the Model Access class (see below). Now, the Mbdel Access attributes on Request,
Session and Context are managed using code that is private to Model Access itself. Similarly, the code which gives priority to a Request model over a
Session model is uniformly implemented across the models.

It remains to be seen whether this uniformity can satisfy the various needs of the application. If not, at least the changes can all be made within a single
point of access.

The DAO layer

This mechanism is pervasive through the code, and remains quite useful. In it, a WebappDaoFact or y is created, with access to particular data models.
This factory then can be used to create DAO objects which satisfy interfaces like | ndi vi dual Dao, Ont ol ogy DAO, or User Account sDAQO. Each of these
object implements a collection of convenience methods which are used to manipulate the backing data models.

Because the factory and each of the DAOs is an interface, alternative implementations can be written which provide
Optimization for Jena RDB models
Optimization for Jena SDB models

Filtering of restricted data

L]
L]
L]
® and more...

Initially, the WebappDaoFact or y may have been used only with the full Union model. But what if you want to use these DAOs only against asserted
triples? Or only against the ABox? This led to the Ont Mbdel Sel ect or.

OntModelSelectors

An Ont Model Sel ect or provides a way to collect a group of Models and construct a WebappDaoFact or y. With slots for ABox, TBox, and Full model, an
Ont Model Sel ect or could provide a consistent view on assertions, or on inferences, or on the union. The Ont Mbdel Sel ect or also holds references to
a display model, an application metadata model, and a user accounts model, but these are more for convenience than flexibility.

Prior to release 1.6, Ont Model Sel ect or s, like Ont Model s, were stored in attributes of the Context, Session, and Request. They have been subsumed
into the Model Access class.

Further, the semantics of the "standard” Ont Model Sel ect or s have changed, so they only act as facades before the Models store in Model Access. In
this way, if we make this call:

Model Access. on(sessi on). set Ont Model (Model | D. BASE_ABOX, soneWei r dhvodel)

Then both of the following calls would return the same model:

Model Access. on(sessi on). get Ont Mbdel (Model | D. BASE_ABOX) ;
Model Access. on(sessi on). get BaseOnt Model Sel ect or () . get ABoxModel () ;

Again, this is a change in the semantics of OntModelSelectors. It insures a consistent representation of Ont Model s across Ont Model Sel ect or s, but it is
certainly possible that existing code relies on an inconsistent model instead.

The RDF Service

Model makers and Model sources

The ModelAccess class

TBD - Show how it represents all of these distinctions. Describe the scope searching and masking, wrt set and get. Include the OntModelSelectors and
WADFs.

Initializing the Models

When VIVO starts up, Ont Model objects are created to represent the various data models. The configuration models are created from the datasource
connection, usually to a MySQL database. The content models are created using the new RDFService layer. By default this also uses the datasource
connection, but it can be configured to use any SPARQL endpoint for its data.

Some of the smaller models are "memory-mapped" for faster access. This means that they are loaded entirely into memory at startup. Any changes made
to the memory image will be replicated in the original model.

The data in each model persists in the application datasource (usually a MySQL database), or in the RDFService. Also, data from disk files may be loaded
into the models. This may occur:

¢ the first time that VIVO starts up,
® if a model is found to be empty,
® every time that VIVO starts up.

depending on the particular model.

Where are the RDF files?

In the distribution, the RDF files appear in [vi vo] / rdf andin[vi tr o]/ webapp/ r df . These directories are merged during the build process in the
usual way, with files in VIVO preferred over files in Vitro.

During the build process, the RDF files are copied to the VIVO home directory, and at runtime VIVO will read them from there.

The "first time"

For purposes of initialization, "first time" RDF files are loaded if the relevant data model contains no statements. Content models may also load "first time"
files if the RDFService detects that its SDB-based datastore has not been initialized.

Initializing Configuration models

Application metadata

Function: Describes the configuration of VIVO at this site. Many of the configuration options are obsolete.
Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-applicationMetadata

Source: the application Datasource (MySQL database) (memory-mapped)

If this is the first startup, read the files in rdf/applicationMetadata/firsttime.

® |n Vitro, there are none
® In VIVO, initialSiteConfig.rdf, classgroups.rdf and propertygroups.rdf

User Accounts

Contains login credentials and assigned roles for VIVO users.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-userAccounts
Source: the application Datasource (MySQL database) (memory-mapped)
If this model is empty, read the files in rdf/auth/firsttime.

® In Vitro, there are none (except during Selenium testing)
® |n VIVO, there are none.

Every time, read the files in rdf/auth/everytime

® |n Vitro, permissions_config.n3
® In VIVO, there are none.

http://vitro.mannlib.cornell.edu/default/vitro-kb-applicationMetadata
http://vitro.mannlib.cornell.edu/default/vitro-kb-userAccounts

The Display model

This is the ABox for the display model, and contains the RDF statements that define managed pages, custom short views, and other items.
Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata

Source: the application Datasource (MySQL database) (memory-mapped)

If this model is empty, read the files in rdf/display/firsttime

® In Vitro, application.owl, menu.n3, profilePageType.n3
® VIVO contains its own copy of menu.n3, which overrides the one in Vitro

Every time, read the files in rdf/display/everytime

® in Vitro, displayModelListViews.rdf
® In VIVO, homePageDataGetters.n3, localeSelectionGUI.n3, vivoDepartmentQueries.n3, vivoListViewConfig.rdf, vivoSearchProhibited.n3

Display TBox

The TBox for the display model.

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadataTBOX
Source: the application Datasource (MySQL database) (memory-mapped)
Every time, read the files in rdf/displayTbox/everytime.

® In Vitro, displayTBOX.n3
® |n VIVO, there are none

DisplayDisplay
Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata-displayModel
Source: the application Datasource (MySQL database) (memory-mapped)
Every time, read the files in rdf/displayDisplay/everytime
® |n Vitro, displayDisplay.n3

® In VIVO, there are none.

Initializing Content models

base ABox

Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-2
Source: named graph from the RDFService

If first setup, read the files in rdf/abox/firsttime

® |n Vitro, there are none
® In VIVO, geopolitical.ver1.1-11-18-11.individual-labels.rdf

Every restart, read the files in rdf/abox/filegraph, and create named models in the RDFService. Add them as sub-models to the base ABox. If these files
are changed or deleted, update the RDFService accordingly.

® |n Vitro, there are none
® In Vivo, geopolitical.abox.verl.1-11-18-11.owl, academicDegree.rdf, continents.n3
us-states.rdf, dateTimeValuePrecision.owl, validation.n3, documentStatus.owl, vocabularySource.n3
base TBox
Name: http://vitro.mannlib.cornell.edu/default/asserted-tbox
Source: named graph from the RDFService (memory-mapped)
If first setup, read the files in rdf/tbox/firsttime (without subdirectories)

® |n Vitro, there are none
® |n VIVO, additionalHiding.n3 initialTBoxAnnotations.n3

Every restart, read the files in rdf/tbox/filegraph, and create named models in the RDFService. Add them as sub-models to the base TBox. If these files are
changed or deleted, update the RDFService accordingly.

http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata
http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadataTBOX
http://vitro.mannlib.cornell.edu/default/vitro-kb-displayMetadata-displayModel
http://vitro.mannlib.cornell.edu/default/vitro-kb-2
http://vitro.mannlib.cornell.edu/default/asserted-tbox

® |n Vitro, vitro-0.7.owl, vitroPublic.owl
® |nVIVO, 44 files:

lusr/local/vivo/home/rdf/tbox/filegraph

READVE. nmd educati on. o personTypes. n3
agent . owl event. ow process. owl
appControl s-tenp. n3 geo-political.ow publ i cation. ow
bf o- bri dge. ow grant. ow rel ati onshi p. ow
bf 0. owl I i nkSuppr essi on. n3 rel ati onshi pAxi ons. n3
cl asses-addi tional . ow | ocati on. oM resear ch-resource-i ao. oM
clinical.ow obj ect - properties. ow resear ch-resource. ow
contact-vcard. ow obj ect - properties2. ow research. ow
contact . owl obj ect - properties3. ow rol e.ow
dat a- properties. ow obj ect Donwi ns. r df sanmeAs. n3
dat aDomai ns. r df obj ect Ranges. r df service. oM
dat aset . owl ont ol ogi es. ow skos-vi vo. oW
date-tinme. ow orcid-interface.n3 t eachi ng. ow
dat eTi neVal uePr eci si on. ow ot her. owl vitro-0.7.ow
docunent St at us. ow out reach. ow vitroPublic.ow

base Full

Source: a combination of base ABox and base TBox

inference ABox
Name: http://vitro.mannlib.cornell.edu/default/vitro-kb-inf

Source: named graph from the RDFService

inference TBox
Name: http://vitro.mannlib.cornell.edu/default/inferred-tbox

Source: named graph from the RDFService (memory-mapped)

inference Full

Source: a combination of inference ABox and inference TBox

union ABox

Source: a combination of base ABox and inference ABox

union TBox

Source: a combination of base TBox and inference TBox

union Full

Source: a combination of union ABox and union TBox

Transition from previous methods

TBD - What are we transitioning from? Check out VIVO-82.

® Semantics have changed: saves code, but may alter some uses.

o Always searches the stack

© OMS are facades with no internal state
" There is no way to set an OMS - set the models instead
= Keeps consistent

http://vitro.mannlib.cornell.edu/default/vitro-kb-inf
http://vitro.mannlib.cornell.edu/default/inferred-tbox

prior to ModelAccess using ModelAccess

User Accounts Model = ctx.getAttribute("userAccountsOntModel") ModelAccess.on(ctx).getUserAccountsModel()

ctx.setAttribute("userAccountsOntModel", model) = ModelAccess.on(ctx).setUserAccountsModel(model)

DisplayModel req.getAttribute("displayOntModel") ModelAccess.on(req).getDisplayModel()
session.getAttribute("displayOntModel") ModelAccess.on(session).getDisplayModel()
ctx.getAttribute("displayOntModel") ModelAccess.on(ctx).getDisplayModel()

ModelContext.getDisplayModel(ctx)
ctx.setAttribute("displayOntModel", model) ModelAccess.on(ctx).getDisplayModel()

ModelContext.setDisplayModel(model, ctx)

req.setAttribute("displayOntModel”, model) ModelAccess.on(req).setDisplayModel(model)

"jenaOntModel" ctx.getAttribute("jenaOntModel") ModelAccess.on(ctx).getJenaOntModel()
session.getAttribute("jenaOntModel") ModelAccess.on(session).getJenaOntModel()
req.getAttribute("jenaOntModel") ModelAccess.on(req).getJenaOntModel()
ctx.setAttribute("jenaOntModel", model) ModelAccess.on(ctx).setOntModel(ModellID.UNION_FULL, model)
req.setAttribute("jenaOntModel", model) ModelAccess.on(req).setOntModel(ModellD.UNION_FULL, model)

ModelAccess.on(req).setJenaOntModel(model)

"baseOntModel" ModelContext.getBaseOntModel(ctx) ModelAccess.on(ctx).getOntModel(ModellD.BASE_FULL)
"assertionsModel" ctx.getAttribute("baseOntModel") ModelAccess.on(ctx).getBaseOntModel()
Base Full Model session.getAttribute("baseOntModel")

ModelContext.setBaseOntModel(model, ctx)
"inferenceModel" ctx.getAttribute("inferenceOntModel") ModelAccess.on(ctx).getinferenceOntModel()

Inference Full Model

Notes:

® "jenaOntModel" is a previous term for the Union Full model. The convenience methods get JenaOnt Model () and set JenaOnt Mbdel (m) suppo
rt this use.

* "baseOntModel" and "assertionsModel" are both previous terms for the Base Full model. The convenience methods get BaseOnt Model () and s
et BaseOnt Model () support this use.

prior to ModelAccess using ModelAccess
ontModelSelector ModelContext.setOntModelSelector(model, ctx) = no mutator methods
unionOntModelSelector ModelContext.getUnionOntModelSelector(ctx) = ModelAccess.on(ctx).getOntModelSelector()
ctx.getAttribute("ontModelSelector") ModelAccess.on(ctx).getUnionOntModelSelector()

ctx.getAttribute("unionOntModelSelector”)
baseOntModelSelector ctx.getAttribute("baseOntModelSelector") ModelAccess.on(ctx).getBaseOntModelSelector()

inferenceOntModelSelector = ctx.getAttribute("inferenceOntModelSelector") ModelAccess.on(ctx).getinferenceOntModelSelector()

* The default WebappDaoFactory is the one backed by the unionOntModelSelector. On the request level, this is also known as the
"full WebappDaoFactory". The convenience methodsget WebappDaoFact or y() and set WebappDaoFact or y(wdf) support this use.
* "baseWebappDaoFactory" and "assertionsWebappDaoFactory" are both previous terms for the WebappDaoFactory backed by the
baseOntModelSelector. The convenience methods get BaseWebappDaoFact ory() and set BaseWebappDaoFact or y(wdf) support this use.
® Nobody was using the "deductionsWebappDaoFactory", so we got rid of it.

	Accessing VIVO Data Models

