
1.
2.
3.

1.
2.
3.

4.

VIVO Release Process
This document is intended to be used and kept up to date by the . It details the steps necessary to perform an official release of VIVO Release Manager
VIVO.

Before Release Day
Release Numbering Convention
Verify release privileges
Update Maven settings.xml
Ensure you have a trusted code signing key
Ensure you have a SSH key setup locally and in GitHub

Creation of release candidates
Release Day
Push Release Branch to develop and Maintenance
Announce release

Helpful Tips - Debugging Issues
Key Issues?

Before Release Day

Release Numbering Convention

As agreed by the Steering Group, VIVO follows the Semantic Versioning guidelines - http://semver.org/

MAJOR version when you make incompatible API changes,
MINOR version when you add functionality in a backwards-compatible manner, and
PATCH version when you make backwards-compatible bug fixes.

Verify release privileges

To make sure release day goes smoothly, you should ensure that:

You have an account with commit access for the on github. As a committer, you should already have this level of access.vivo-project
You have an account with edit privileges on the lyrasis.org .Confluence wiki
You have an account and have requested to be given permission to publish to the org.vivoweb groupId by adding a comment to oss.sonatype.org
the VIVO Sonatype Hosting Ticket
You have project configuration privileges on JIRA (you'll see an error if you don't) : must be added to `Project Settings Administrators` rolehere

Update Maven settings.xml

Vitro and VIVO root pom.xml already has the correct staging and snapshot repositories listed in the OSS parent's '<distributionManagement>' section. In
order to deploy, you will need to add your Sonatype OSS username and password to your local file. For example:~/.m2/settings.xml

http://semver.org/
https://github.com/vivo-project
https://wiki.lyrasis.org
http://oss.sonatype.org
https://issues.sonatype.org/browse/OSSRH-23214
https://vivo-project.atlassian.net/projects/VIVO?selectedItem=com.atlassian.jira.jira-projects-plugin:release-page

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <profiles>
 <id>ossrh</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <gpg.keyname>YourKeyID</gpg.keyname>
 <gpg.passphrase>YourKeyPassphrase</gpg.passphrase>
 <gpg.defaultKeyring>false</gpg.defaultKeyring>
 <gpg.useagent>true</gpg.useagent>
 <gpg.lockmode>never</gpg.lockmode>
 <gpg.homedir>YourGPGDir</gpg.homedir>
 <gpg.publicKeyring>YourGPGDir/pubring.gpg</gpg.publicKeyring>
 <gpg.secretKeyring>YourGPGDir/secring.gpg</gpg.secretKeyring>
 </properties>
 </profiles>
 <servers>
 <!--Login info for Sonatype SnapShot repository-->
 <server>
 <id>ossrh</id>
 <username>YourSonatypeUsername</username>
 <password>YourSonatypePassword</password>
 </server>
 <server>
 <id>sonatype-nexus-snapshots</id>
 <username>YourSonatypeUsername</username>
 <password>YourSonatypePassword</password>
 </server>
 <server>
 <id>github</id>
 <username>your-github-id</username>
 <password>your-github-pwd</password>
 </server>
 </servers>
</settings>

If you don't yet have a file, you should create one, and copy the full contents above (obviously make sure to put in your username ~/.m2/settings.xml
and password, and GPG details).

Ensure you have a trusted code signing key

create one if you haven't before
ensure that it's listed within the contributor keys
You generate and publish your own personal Code Signing Key (required by Sonatype). Here are two sites that give hints on how to do that:must

Creating a Code Signing Key
How to Generate PGP Signatures with Maven (required for all Sonatype releases)
Make sure to publish your Key file to , as this is the Key Server Sonatype uses for verification:hkp://pgp.mit.edu

(e.g.) gpg --keyserver --send-keys [yourKeyID]hkp://pgp.mit.edu
[yourKeyId] can be found by running the following command and copying the alpha-numeric string after the "/" on
the "pub" line

 gpg --list-keys
You can see if your key is already on that Key Server by visiting and searching on your namehttp://pgp.mit.edu

Ensure you have a SSH key setup locally and in GitHub

Create SSH Key
mkdir -p ~/.ssh
ssh-keyscan -t rsa >> ~/.ssh/known_hostsgithub.com
ssh-keygen -t rsa -C "user.email"

Setup on GitHub
open the public key with this command and copy it. $ cat ~/.ssh/id_rsa.pub
Add the key to SSH keys list on your GitHub profile. id_rsa.pub

https://wiki.duraspace.org/display/FCREPO/Creating+a+Code+Signing+Key
https://wiki.duraspace.org/display/VIVO/VIVO+Committers
https://wiki.duraspace.org/display/FCREPO/Creating+a+Code+Signing+Key
http://blog.sonatype.com/2010/01/how-to-generate-pgp-signatures-with-maven/
hkp://pgp.mit.edu
hkp://pgp.mit.edu
http://pgp.mit.edu/
http://github.com

Creation of release candidates
The should also be ready prior to code freeze.test plan
Checkout VIVO-release-publishing project (git checkout)https://github.com/vivo-project/VIVO-release-publisher
Configure variables for creation of release candidate (defineVariables.sh)

Variable release number

#!/bin/bash
RC define common variables Script

export RC_TARGET_DIR=RC
export ORG=vivo-project
export PERSONAL_ACCESS_TOKEN=XXXXXXXX
export BRANCH=main
export RC_VERSION=1.14.0
export RC_VERSION_MINOR=1.14
export RC_NEXT_SNAPSHOT=1.14.1
RC_NUM=5

export Vitro_REPO=Vitro
export Vitro_TAG=vitro
export Vitro_RC_NUM=${RC_NUM}
export VIVO_REPO=VIVO
export VIVO_TAG=vivo
export VIVO_RC_NUM=${RC_NUM}

run prepareReleaseCandidate.sh (./prepareReleaseCandidate.sh)
announce that Release candidate is ready for testing ()Release Testing

Release testing page should contain
instructions how to build and run VIVO Release candidate or how to get credentials for an active and public VIVO instance (for
instance)https://vivo.tib.eu/vivorc
links to google forms where community can provide test results and feedbacks

analyze results of release candidate testing inside VIVO committers group and classify reported issue to release blockers and non-release
blockers
if there are release blockers, after resolving those issues, the new release candidate should be published, if not, release is ready to be published
(see the next section)

Release Day
Checkout VIVO-release-publishing project (git checkout)https://github.com/vivo-project/VIVO-release-publisher
Configure variables for creation of release candidate (defineVariables.sh)

Variable release number

#!/bin/bash
RC define common variables Script

export RC_TARGET_DIR=RC
export ORG=vivo-project
export PERSONAL_ACCESS_TOKEN=XXXXXXXX
export BRANCH=main
export RC_VERSION=1.14.0
export RC_VERSION_MINOR=1.14
export RC_NEXT_SNAPSHOT=1.14.1
RC_NUM=5

export Vitro_REPO=Vitro
export Vitro_TAG=vitro
export Vitro_RC_NUM=${RC_NUM}
export VIVO_REPO=VIVO
export VIVO_TAG=vivo
export VIVO_RC_NUM=${RC_NUM}

run publishReleaseVitro.sh (./publishReleaseVitro.sh)
Go to and check if everything is okhttps://github.com/vivo-project/Vitro/releases/

Go to (Nexus Repository Manager)https://oss.sonatype.org/index.html

https://wiki.duraspace.org/display/VIVO/Release+Testing+-+1.14.0
https://github.com/vivo-project/VIVO-release-publisher
https://wiki.lyrasis.org/display/VIVO/Release+Testing+-+1.14.0
https://vivo.tib.eu/vivorc
https://github.com/vivo-project/VIVO-release-publisher
https://github.com/vivo-project/Vitro/releases/
https://oss.sonatype.org/index.html

Click on Log In (Top Right Corner) and use your ossrh id from your settings.xml file
Click Staging Repositories in left navigation under Build Promotion which will open a new tab
Search for "vivoweb" in upper right search box (project will not have $REPO in title)
Select repository and verify that Vitro is present in the Content tab

Look for the correct types as well - war, pom, jar, md5, asc, etc.
Note there is sometimes a delay on larger files showing in the Repo.

Click Close, then Refresh, then Release
After a few moments click into the search under Artifact Search in the left navigation and type "vivoweb"
A new Search tab will appear with all of the org.vivoweb Release artifacts
Verify that the new release versions are now listed

Note there is sometimes a delay on larger files showing in the Repo.
This will publish the artifacts to the Sonatype releases repository and start the process of syncing them with Maven Central, which may take
several hours. When finished, they'll be available at https://repo1.maven.org/maven2/org/vivoweb.

Wait until the Vitro release is available in the maven repository (). This make take several hours or http://repo1.maven.org/maven2/org/vivoweb
one day.
run publishReleaseVIVO.sh (./publishReleaseVIVO.sh)
Go to and check if everything is okhttps://github.com/vivo-project/VIVO/releases/
Go to (Nexus Repository Manager)https://oss.sonatype.org/index.html
Click on Log In (Top Right Corner) and use your ossrh id from your settings.xml file
Click Staging Repositories in left navigation under Build Promotion which will open a new tab
Search for "vivoweb" in upper right search box (project will not have $REPO in title)
Select repository and verify that VIVO is present in the Content tab

Look for the correct types as well - war, pom, jar, md5, asc, etc.
Note there is sometimes a delay on larger files showing in the Repo.

Click Close, then Refresh, then Release
After a few moments click into the search under Artifact Search in the left navigation and type "vivoweb"
A new Search tab will appear with all of the org.vivoweb Release artifacts
Verify that the new release versions are now listed

Note there is sometimes a delay on larger files showing in the Repo.
This will publish the artifacts to the Sonatype releases repository and start the process of syncing them with Maven Central, which may take
several hours. When finished, they'll be available at https://repo1.maven.org/maven2/org/vivoweb.
Make release announcement and update technical documentation at wiki
Distribute the message that new release has been published

Push Release Branch to develop and Maintenance
Checkout VIVO-release-publishing project (git checkout)https://github.com/vivo-project/VIVO-release-publisher
Configure variables for creation of release candidate (defineVariables.sh)

Variable release number

#!/bin/bash
RC define common variables Script

export RC_TARGET_DIR=RC
export ORG=vivo-project
export PERSONAL_ACCESS_TOKEN=XXXXXXXX
export BRANCH=main
export RC_VERSION=1.14.0
export RC_VERSION_MINOR=1.14
export RC_NEXT_SNAPSHOT=1.14.1
RC_NUM=5

export Vitro_REPO=Vitro
export Vitro_TAG=vitro
export Vitro_RC_NUM=${RC_NUM}
export VIVO_REPO=VIVO
export VIVO_TAG=vivo
export VIVO_RC_NUM=${RC_NUM}

run pushToMaintenance.sh (./pushToMaintenance.sh)

Announce release
Let know that the release is complete and can be announced.Dragan Ivanovic

https://repo1.maven.org/maven2/org/vivoweb
http://repo1.maven.org/maven2/org/vivoweb
https://github.com/vivo-project/VIVO/releases/
https://oss.sonatype.org/index.html
https://repo1.maven.org/maven2/org/vivoweb
https://wiki.lyrasis.org/vivo/community-pages/releases
https://github.com/vivo-project/VIVO-release-publisher
https://wiki.lyrasis.org/display/~dragan.ivanovic

Helpful Tips - Debugging Issues

Key Issues?

#Verify that your GPG key is in your ring
gpg --list-secret-keys

#If the key isn't listed import the private key your previously created
gpg --import name-of-private-key.asc

#List the keys again but in keyid LONG format
gpg --list-secret-keys --keyid-format LONG

#Take the keyid and setup git to use it as your global default.
git config --global user.signingkey YYYYXXXXYYYYXXXX

	VIVO Release Process

